

Database Normalization Complete

JasonM (jasonm@accessvba.com)
Last Updated: 28 July 2004

Table Of Contents
Part 1 - Introduction

1.1 What is Normalization?
1.2 Why should I Normalize?
1.3 Terminology
1.4 Summary

Part 2 - Basic Normal Forms

2.1 Zero Normal Form
2.2 First Normal Form
2.3 Second Normal Form
2.4 Third Normal Form
2.5 Summary

Part 3 - Higher Normal Forms
3.1 About the Higher Normal Forms
3.2 Boyce-Codd Normal Form
3.3 Fourth Normal Form
3.4 Projection-Join Normal Form

Appendixes
A: Notation
B: Inference Rules
C: Glossary
D: Cheat Sheet
E: Other Normal Forms
F: References

1

INTRODUCTION

1.1 What is Normalization?
1.2 Why Should I Normalize?
1.3 Terminology
1.4 Summary

1.1 What Is Normalization?

Normalization, in the general sense, means to conform or reduce to a norm or standard[MW04]. For our purposes here, this means
ensuring the data in the database meets a normal form. There are several of these normal forms, the most important (or
“classical”) are in the main body of this paper, with additional normal forms in Appendix E.

A table is normalized if it is in first normal form (1NF), which we discuss later. Although common to speak of tables that are not
in a higher normal form -- such as 3NF -- as “unnormalized”, this is strictly incorrect.

It is also common to speak of the entire database, or groups of tables being “normalized”, but again, strictly speaking, it is the
individual tables that are normalized. There are two points to expand on here:

1. If every table is in the same normal form, it is acceptable to say the database is in that form.
2. Some normal forms require considering a group of tables, rather than a single table.

An important point to make about the normalization process is that it is basically a formalization of common sense. Often the
example tables will simply “look wrong”; the purpose of the normal forms is to help us formally identify the problem and
determine how to fix it.

1.2 Why Should I Normalize?

[Cod71-2] gives six objectives of normalization:

1. To make it feasible to tabulate any relation in the database.
2. To obtain a powerful retrieval capability by means of a simple collection of operators
3. To free the collection of relations from undesirable insertion, update, and deletion dependencies
4. To reduce the need for restructuring relations when new data is introduced (increasing application lifespan)
5. To make the model for informative to users
6. To make the database neutral to query statistics

[Vin98-2] gives three goals of database design that normalization addresses:

1. Elimination of key-based update anomalies
2. Elimination of redundancy
3. Minimization of storage

Update anomalies occur when data is not changed in all places. This is the general type of anomaly, often broken down into
three sub-types:

1. Insertion: Storing new data
2. Deletion: Removing existing data
3. Update: Changing existing data

The first two goals, elimination of anomalies and elimination of redundancy are closely related. When redundant data exists, this
means multiple places must be updated, one for each occurrence of the data. It is by eliminating redundancy that we simplify
update operations on the table. The last goal, minimization of storage, follows the first two. By eliminating redundancy, we
reduce the amount of storage required to maintain the same information.

It is important to note that duplicate data is not the same a redundant data. For our purposes, redundant data is that data we can
remove without a loss of information. In contrast, duplicate data is required to retain information – a simple example being key

fields which two tables share in a relationship. In each table, the same values will be duplicated, but this is necessary to retain
information and join the tables.

Finally, in [Cod74] the objectives are restated and outlined:

1. Provide a high degree of data independence
2. Provide a simple view of the data
3. Simplify to job of the database administrator
4. Introduce a theoretical foundation for database management
5. Merge fact retrieval and file management
6. Allow sets of data to be treated as operands, rather than being processed one element at a time

1.3 Terminology

We must introduce some terminology to help us understand normalization. The purpose of this section is to illustrate some basic
concepts while introducing them. Some of the terms receive further treatment later, and Appendix C of this paper also offers a
glossary.

1.3.1 Basic Terms

We begin by examining a sample table and providing relational terminology for each aspect of that table. Consider the following
table in Fig. 1.1, called R:

Fig 1.1 – Main Table Example

The table column headers represent a relation variable, or relvar [Dat02]. We notate this relvar like so:

R {Store, Manager, Location, Status}

This relvar has a predicate, a truth statement about its meaning, this relvar says:
“A store has a name, a manager, a location, and a status.”

This is sometimes called the intension, or meaning of the table.

This relvar has 4 attributes, which correspond to the columns of the table. The table
itself is a relation value, or simply relation; an instance of the relvar. If a row was
inserted or deleted, it would be a different relation, but the same relvar.
There is therefore a subtle, but sometimes important, difference between a
relation and a relvar.

This is sometimes called the extension, or instantaneous value, of the table.

A relation consists of a heading and a body. The heading corresponds to the column names, and the body to the rows of the
table, the actual data. We will discuss this in more detail when covering first normal form.

This relation has 4 tuples, each one corresponding to a row of the table, so we can say this relation has a cardinality of 4. Each
tuple is a different proposition about the predicate of the relvar. For example, the first tuple asserts the following proposition is
true: “The store named Alpha has the manager named Smith, is in the East location and has a status of Open.”

Each tuple (and therefore the relation and relvar) has a degree of 4. That is, each tuple contains 4 tuple values, one for each
attribute of the relvar. Each tuple value has a value from the domain of the corresponding attribute. That is, there is an
acceptable set of values for the Store attribute, which may or may not be the same acceptable set of values for the Manager
attribute. In this case it is not, as Store has a domain of store numbers, and Manager a domain of manager names.

In this paper, we assume the domains can be specified precisely. In a real-world database management system (DBMS), we may
have to settle for a higher level of abstraction, such as saying Store has a domain of integers, and Manager a domain of character
strings. Again, we discuss this further in our coverage of first normal form.

Finally, assume the following business rules are in effect:

Rough Equivalents
Attribute Column

Cardinality # of Rows
Degree # of Columns
Domain Column Type
Relation Table
Relvar Table Headers
Tuple Row

Tuple Value Cell
Fig 1.2

1. A store has only one manager, and each manager manages only one store.
2. A store has only one location (but multiple stores can have the same location).
3. Each store in a location has the same status (but multiple locations can have the same status).

Knowing these rules, we can determine the keys of R. And keys are the subject of the next section.

1.3.2 Keys

A key, generally speaking, is some set of attributes that can uniquely identify a tuple. That is, no two tuples can share the same
key – although they may share the same set of attribute, the combined values of those attributes will be unique for each tuple.
(This does not exactly include foreign keys, but they are not important in our discussion.)

We will discuss four types of keys: superkeys, candidate keys, primary keys and alternate keys.

1.3.2.1 Superkeys

A superkey is a set of attributes that can be used to uniquely identify each tuple. Here are the superkeys of R:

{Store, Manager, Location, Status} {Manager, Location, Status}
{Store, Manager, Location} {Manager, Location}
{Store, Manager} Manager
Store

Every relation must have at least one superkey, made up of all attributes. If this were not so, the relation would have duplicate
tuples, which is not allowed, as we will see later. Most relations have several superkeys.

Generally, we are not interested in superkeys except that we use them to select candidate keys. However, there are some normal
forms that are directly interested in superkeys.

1.3.2.2 Candidate keys

A candidate key contains only those attributes required to uniquely identify each tuple. That is, it is a superkey with no proper
subset which is itself a superkey, it is irreducible. These are the candidate keys of R:

Store Manager

Compare these candidate keys to the superkey {Store, Manager}. This superkey has two proper subsets, Store and Manager, both
of which are superkeys. Because we do not need every attribute in {Store, Manager} to uniquely identify a tuple, {Store,
Manager} is not a candidate key.

Just as we saw for superkeys, every relation must have at least one candidate key. Most relations have multiple candidate keys,
but fewer candidate keys than superkeys.

An attribute contained in a candidate key is a prime attribute. An attribute not in any candidate key is a nonprime attribute. The
prime attributes in R are Store and Manager, and the nonprime attributes are Location and Status.

Candidate keys are by far the most important type of key we will be concerned with in normalization.

1.3.2.3 Primary keys

We select a primary key from the candidate keys. In this case, we select Store and signify this by underlining the attribute name.

Every relation must have one and only one primary key. It is possible that a relation has only one superkey, only one candidate
key, and only one primary key, and all three are the same, but this is not usually the case.

Although primary keys are very important in many areas, in normalization
we are usually only interested in them because they are also candidate keys,
and we often would like to have a relation that has only one candidate key,
which therefore must be the primary key.

1.3.2.4 Alternate keys

The remaining candidate keys that we did not select as a primary key are the
alternate keys. For the purposes of normalization, we are only interested in
alternate keys because they are also candidate keys, and we would like to
have a relation that doesn’t have any alternate keys left after selecting a
primary key.

Superkeys
Must have one or more
Rarely important in normalization
Selected from attributes
Candidate keys
Must have one or more
Very important in normalization
Selected from superkeys
Primary key
Must have one and only one
Rarely important in normalization
Selected from candidate keys
Alternate key
May have zero or more
Rarely important in normalization
“Leftover” from candidate keys

Fig 1.3

Just a few points to make before moving on:
1. The presence in a candidate key, not primary key determines whether and attribute is prime or nonprime. The
similarity in names between prime attribute and primary key can be misleading.
2. In this paper, key without qualification means “a candidate key with one or more attributes”.
3. A key having only one attribute is simple. A key having more than one attribute is compound. We can talk about a
compound primary key as being a primary key consisting of two or more attributes.

1.3.3 Functional Dependencies

A functional dependency (FD) exists when one attribute value has one and only one value of a different attribute associated with
it in the relation. For example, in Fig 1.1, the value of Location is determined by Store, that is if you know Store, you know
Location.

Following the notation used in [Cod71], we use Store Location to express this dependency. You can read this notation several
ways, according to what you are trying to express or personal preference:

“Store determines Location”
“Location is functionally dependent on Store”
“Store is a determinant for Location”

If we want to show that there is not a FD between two attributes we use Location / Store.

To generalize this we say A B, where A and B are some attributes in the relation. Note that A and B could be sets of attributes,
rather that single attributes. If we want to specifically show there is not a FD between two attributes, we can say A / B. If we
want to show A B and B A, we can say A ↔ B. Here are some examples from Fig 1.1:

Store Location (if you know the value of Store, you also know the value of Location)
Location / Store (however, if you know Location, you do not know Store)
Store ↔ Manager (if you know Store, you know Manager, and vice versa)

A FD always exists if B is a subset of A, and in that case it is a trivial functional dependency. To expand on this just a bit, this
means if A and B are single attributes, then B is A, so in this case A B is the same as saying A A, or in Fig 1.1, Store
Store. This is obviously true, and we are usually not interested in trivial functional dependencies.

1.3.3.1 Nontrivial Functional Dependencies

We use R to illustrate. Consider the FD Store Location. This means “Store determines Location”, or if you know Store, you
also know Location. By looking at Fig 1.1, if you know Store is “Alpha”, then you also know Location is “East”. If you know
Store is “Beta”, then you also know Location is “East”. There is a one-to-one correspondence, in a certain direction, between
Store values and Location values.

Now, consider the reverse: Location / Store. If you know Location is “East”, you do not know Store. It could be “Alpha” or it
could be “Beta”. There is not a one-to-one correspondence, in a certain direction, between Location values and Store values.

However, consider that Store Manager and Manager Store are both true. In this case, there is a one-to-one correspondence
in both directions. We can notate this, then, as Store ↔ Manager. (This particular notation is not common – usually both FDs are
expressed separately – but we cover it here for completeness.)

Throughout this paper we use ƒ to mean the set of all functional dependencies in the relation. Here, then, is the set of all
functional dependencies in R (the ƒ of R), numbered for reference:

ƒ1. Store Manager
ƒ2. Manager Store

ƒ3. Store Location
ƒ4. Location Status

Notice that ƒ is a more formal statement of the business rules. This has 2 interesting implications:

1. You can not properly normalize a table without knowing the underlying business rules.
2. You can not simply look at a table and determine what normal form it is (or isn’t) in.

Now, not only does a FD describe a business rule, but by doing so, it also applies a constraint to the relation. That means no
tuple can be inserted into the table which would make any FD in ƒ invalid, or violate the constraint that a FD implies.
Constraints are very important in the normalization process.

For example, consider ƒ3: Store Location. This tells us that if you know
Store, you also know Location. It means that any given store has one and only
one Location. Keep this in mind, and consider what would happen if we tried
to insert this tuple t into R: t (Alpha, Smith, West, Open)

If we allowed t to be inserted, the constraint ƒ3 requires would be violated. That
is, store Alpha would have two locations and Store Location would no longer
hold. (There are other problems as well, such as the primary key would be
duplicated.)

1.3.3.2 Irreducible Functional Dependencies

Consider ƒ2: Store Location. Now let us add an attribute to the left hand
side, Manager. (This is the augmentation, see Appendix B.) We then have a new
FD:

ƒ5: {Store, Manager} Location.

This new FD is true, but note that Manager is not required for the FD to hold.
We could reduce the left hand side by removing SName and the FD would still
be true. Therefore, {Store, Manager} Location is not an irreducible
functional dependency.

Compare to: Store Location, which is irreducible – with only one attribute on the left hand side, it must be! Location is
irreducibly dependent on Store.

We are following the terminology in [Dat04] here. Many references call an irreducible FD a full functional dependence, and
would call Location fully functionally dependent on Store.

2NF seeks to eliminate non-irreducible FDs.

1.3.3.3 Transitive Functional Dependencies

Let us now consider two FDs inƒ:

ƒ3: Store Location
ƒ4: Location Status

We can read the above as “Store determines Location, and Location determines Status”. Again, we can infer a new FD:

 ƒ6: Store Status. (This is transitivity, again see Appendix B.)

This means if you know the value of Store, you know the value of Status. The FD Store Status is a transitive functional
dependency, because some attribute exists that is in “the middle”. Yet another way is to say that if <a, b> and <a, c> are in R,
then so is the <b, c>.

We often shorten the term transitive functional dependency to transitive dependency, abbreviate as TD, and notate as A (B, C).
For example, we notate the Store Location Status TD like so: Store (Location, Status)

If a FD is not a TD, it is a direct functional dependency, often called a nontransitive dependency.

3NF seeks to eliminate TDs.

1.3.3.3.1 Strict Transitive Functional Dependencies

 If A B and B C, but C / B and B / A, then A C is a strict transitive dependency. Loosely speaking it is “one-way”.
In our example, the TD Store (Location, Status) is a strict transitive dependency.

This is because Store Location Status, but Status / Location and Location / Store. The transitivity is “one-way”, and
therefore strict.

Optimal 3NF is concerned with strict transitive dependencies.

1.3.3.3.2 Transitive Dependencies Contain Functional Dependencies

Interestingly, a FD is just a special case of a TD [Mit83], and the following two expressions are equivalent:

1. (FD) Store Manager
2. (TD) Store (Manager, Manager)

Closure
Recall that we said ƒ is the set of
all FDs in R. This isn’t exactly true,
because we can infer additional
FDs based on the ones we are
given. We really mean that ƒ
contains a set of FDs, from which
we can infer all FDs, this “true” set
of all FDs is the closure of ƒ , and
is notated ƒ+.

What we originally give as ƒ is
actually the minimal closure, the
fewest FDs required to infer ƒ+.

However, we may then infer
additional FDs not in that minimal
closure.

In our transitive dependency notation, we are simply saying: “Store determines Manager and Manager determines Manager”, the
second half of which is a trivial FD, so we are left with “Store
determines Manager”, which the exact same thing the functional
dependency notation expresses. Thus the two notations are equivalent, and it is
shown that a TD can express a FD. Not every TD is a FD, but every FD is a
special case of a TD.

Let us clarify these two seemingly conflicting issues:

1. Every FD is a special case of a TD.
2. Some FDs are direct (nontransitive) dependencies.

Simply stated, we don’t generally consider those FDs that are a special case of
TDs to actually be TDs for the purposes of 3NF (which is where the concept
first becomes important).

However, long after 3NF was introduced it was noticed that all FDs could be considered a type of TDs. (There are additional
dependencies we introduce later; each one generalizing other dependencies, this concept is not limited to FDs and TDs.)

It may help to think of transitive dependencies in the form of A (B, B) as being trivial transitive dependencies, and then saying
we aren’t interested in those, except as “normal” functional dependencies.

1.4 Summary

In this introduction we have briefly discussed both what normalization is and why it is desirable. We introduced basic relational
concepts in comparison to the familiar table, defined several types of keys, and explained functional dependencies in some detail.

The foundation is therefore in place for the next section, Basic Normal Forms.

FD is a TD
We mention this relationship
between TDs and FDs, because
many normal forms are based on
finding a more general type of
dependency and then handling the
more general case. It is good,
then, to become acquainted with
the idea of a dependency that
generalizes another dependency.

2

BASIC NORMAL FORMS

2.1 Zero Normal Form
2.2 First Normal Form
2.3 Second Normal Form
2.4 Third Normal Form
2.5 Summary

2.1 Zero Normal Form (0NF)

Zero Normal Form isn’t a real normal form at all, but we can use the concept to express the idea that some data is not in 1NF.
Occasionally this is called UNF, for UnNormalized Form.

This sort of data is also sometimes called an “unnormalized relation”, but while this conveys an idea, it’s a misleading one. This
is because such data is not actually a relation at all [Pra91], since relational theory doesn’t deal with such data. It’s a bit confusing
then to call something a relation when it is not!

So then, if data not in 1NF is not a relation, then it follows: all relations are in 1NF [Dat03].

And this is what “normalizing” data really means: to represent the data as a relation. Once in 1NF, data is normalized. We do
not want to stop at 1NF, but we do want to start there…

2.2 First Normal Form (1NF)

First Normal Form (1NF)
A table is in 1NF if:

It is a direct and faithful representation of a relation.

We take this definition of 1NF from [Dat03], and since it differs from some common descriptions of 1NF, we want to examine it
carefully.

A major point to make is that a table is a representation of a relation, not actually a relation (a picture of something is not actually
that something, after all). Therefore, there are differences between a table and a relation, and the point of 1NF is to ensure that
the table represents a relation (which by definition is already in 1NF) as faithfully as possible. It is the confusion between a table
and a relation (or the representation with the actual), that causes many people great difficulty.

Here are 5 conditions [Dat03] gives which a table must satisfy:

1. The rows are not ordered.
2. The columns are not ordered.
3. There are no duplicate rows.
4. Every row/column intersection contains exactly one domain value and nothing else.
5. No irregular columns.

We now consider each of these points in turn:

1. The rows are not ordered.
This is often confusing, because the user may want the “first” or “last” or “top 10” or similar results. It also clear that a table has
a first row, followed by a second row, and so forth. However, a relation is unordered, even if the table rows representing the
tuples have some order imposed on them.

2. The columns are not ordered.
This is the same as the first point. Reading left to right; a table clearly has a first column, followed by a second column, and so
forth. Again though, in a relation, the attributes are unordered, even if the table columns have some order imposed on them.

3. There are no duplicate rows.
Recall that each tuple in a relation is a proposition, or a truth statement. To paraphrase Codd: If something is true, saying it twice
doesn’t make it truer! A table may have duplicate rows, but a relation never contains duplicate tuples.

4. Every row/column intersection contains exactly one domain value and nothing else.
This is a major point, and we must consider it in some detail.

Often, “data must be atomic”, “no repeating groups”, or similar phrases are used when defining 1NF.

Consider for a moment what “atomic” may mean. Let us say the table cell contains an individual’s last name, a character string.
Clearly, this is not “atomic” in the sense of being indivisible, because we can use various functions to take the left-most or right-
most characters.

Now, consider a date/time value. We can extract the month, year, day, hour, minute, and second subparts from the value (and
perhaps even more); again, clearly not “atomic” in the sense of being indivisible.

Do we then need one table column for each letter of the last name? Do we need six columns to store a date/time value? Clearly,
“data must be atomic” is not acceptable, and we need a better concept than “atomic” to guide us.

It is better then to say that a “row/column intersection” (or cell) contains a domain value. For example, if the attribute that the
column represents is “Location”, and the domain is “store locations” then each cell in that column contains a store location.

It is true that a particular DBMS may not allow us to so precisely define the domain, and that we may have to settle for a higher
level of abstraction (such as attribute “Location” being of type STRING, rather than of type STORELOCATION), but this is
failing on the part of the DBMS, not relational theory. This failing, by the way, is one reason why it is often necessary to validate
user entries in code or other places external to the relation before allowing that data to be added.

Furthermore, a row/column intersection should contain exactly one domain value. This has two effects:

1. Prevents one kind of “repeating groups”, multiple values in one table cell.
2. Prohibits Nulls in tables.

The second point may seem strange, after all SQL certainly supports Nulls, but accept for now that Nulls are not allowed in
tables1. If a NULL appears, or could appear, something must change to eliminate the NULL or possible NULL.

1 The author hopes to address this in a future appendix to this paper.

Consider now what “repeating groups” may mean. In most references on normalization, this is treated in one of two ways, both
of which are said to violate 1NF (for the same “no repeating groups” reason):

A. Multiple values in one cell B. Multiple columns containing same information
Store Goods
Alpha Food, Books

Store Good1 Good2
Alpha Food Books

Fig 2.1

Example A in Fig 2.1 is clearly not in 1NF, because it contains more than one domain value. Example B, though, is a different
matter. Each row/column intersection in Example B contains one and only one domain value. Is Example B in 1NF, then?

The (possibly) surprising answer is: maybe. Recall that in 1.3.3.1 we said:

“You can not simply look at a table and determine what normal form it is (or isn’t) in.”

This is an example. Suppose that every store sold exactly two goods. In this case, Example B is in 1NF (even if it may be a poor
design choice). However, if some stores had two goods and others less or more, a Null would be required; and 1NF would be
violated.

In both cases, we likely want to have the same representation:

Store Good
Alpha Food
Alpha Books

Fig 2.2

For Example A, some change is required by the rules of 1NF. For Example B, the change may not be required by the rules of
1NF, in this particular case, but it is very probably desirable for other reasons.

Similar to the “atomic” problem, we see that “no repeating groups” is not an acceptable definition for 1NF. So, while a table may
contain multiple values (or a NULL) is a cell, a relation always contains exactly one domain value for each attribute in each
tuple2.

5. No irregular columns
This is not important in our discussion on normalization, but to briefly address the point it prohibits “hidden” columns, table
meta-data and other things not present in a relation. That is, a table may contain meta-data, but all data in a relation is contained
in its tuples.

The key to understanding 1NF is realizing the differences between a table and a relation, and making the table represent a relation
a directly and faithfully as possible. [Dat03] and [Pas04] contain a more detailed treatment of the concept if you want to pursue
additional material.

[Pas04-2] has a nice summary: “… [T]here is no such thing as an ‘unnormalized relvar’. We do not mean that any database table
is always in 1NF, but rather that tables designed to faithfully represent relvars are.” [Emphasis in original.]

For the rest of the normal forms, we will consider normalizing a relvar (or set of relvars), and not the table itself. We will use
tables to represent the relations that result, but the fact that the table must be in 1NF should be understood.

2 This does differ from the original concept given in [Cod71-2] where “each item is a simple number or character string.”

2.3 Second Normal Form (2NF)

Second Normal Form (2NF)
A relvar is in 2NF if:

Every nonprime attribute is irreducibly dependent on each candidate key.

Let us recall R from Fig 1.1:

Store Manager Location Status
Alpha Smith East Open
Beta Jones East Open
Delta Franks West Open
Gamma Wilson North Closed

Fig 1.1 – Revisited for 2NF
Also, remember we have identified two candidate keys for R: Store and Manager.

Let us check our table against the 2NF rule. We need to determine if each nonprime attribute is irreducibly dependent on each
candidate key.

1. Store Location

True, directly given in ƒ3.
2. Store Status

True (but transitive), derived from ƒ3 and ƒ4
3. Manager Location

True (but transitive), derived from ƒ2 and ƒ3
4. Manager Status

True (but transitive), derived from ƒ2 and ƒ3 and ƒ4

There are a lot of TDs, but 2NF is not concerned with them. Each nonprime attribute is irreducibly dependent on each candidate
key, and so R is in 2NF. (This may be a bit of surprise to those who accept a simplified 2NF definition – we deal with this
simplified definition later.)

To illustrate a table in 1NF, but not 2NF, we will therefore need a new example table, call it T:

Store Location Item Ordered
Alpha East Widget 10
Alpha East Gear 20
Beta East Widget 10
Delta West Gear 20

Fig 2.5
The ƒ of T:

ƒ1: Store Location
ƒ2: {Store, Item} Ordered

Here we have one candidate key, a composite candidate key: {Store, Item}. Let us examine the nonprime attributes against this
candidate key:

1. {Store, Item} Location

True, but not irreducibly so, since Store Location holds.
2. {Store, Item} Ordered

True, and irreducibly so.

So, now we have a 2NF violation. In order to solve the problem, we decompose T by taking projections over some set of
attributes in T. Hopefully common sense will indicate which columns to include in each projection, which usually corresponds to
one for each FD inƒ.

In this case we will take two projects, one as T1 {Store, Location}, and one as T2 {Store, Item, Ordered}. Let us do so and
examine the results:

T1
Store Location
Alpha East
Beta East
Delta West

T2
Store Item Ordered
Alpha Widget 10
Alpha Gear 20
Beta Widget 10

ƒ of R
ƒ1: Store Manager
ƒ2: Manager Store
ƒ3: Store Location
ƒ4: Location Status

Fig 2.4

Delta Gear 20
Fig 2.6 – A 2NF decomposition of T

Each relation is now in 2NF3. We can verify this by checking each relation:

T1: One candidate key (Store) and one nonprime attribute (Location). Location is irreducibly dependent on Store.
Thus, R1 meets 2NF.
T2: One candidate key ({Store, Item}), and one nonprime attribute (Ordered). Ordered is irreducibly dependent on
{Store, Item}. Thus, R2 meets 2NF.

Notice that we have duplicate data – Store is repeated in each relation. This is acceptable, and is not the same as redundant data,
which is one thing we want to avoid. Also, by eliminating the redundant data we now only need update Location in one place if
it is changed. Also notice that joining these two tables on Store will give us the original data – this means our decomposition is a
lossless decomposition, because it preserves all the information in the original relation. We always require a lossless
decomposition when decomposing a relation.

As another illustration, consider this table of ordering data:

Item ItemCost Ordered TotalCost
Widget $3.00 10 $30.00
Gear $3.00 12 $36.00
Paper $3.00 10 $30.00

Fig 2.5

Here is theƒ:

ƒ1: Item ItemCost
ƒ2: Item Ordered
ƒ3: {ItemCost, Ordered} TotalCost

There is one candidate key, Item. This means one prime attribute, Item, and three nonprime attributes: ItemCost, Ordered, and
TotalCost.

It is clear from the FDs in ƒ that ItemCost and Ordered are both irreducibly dependent on the candidate key. It is also equally
clear that TotalCost is not. So, we have a 2NF violation. Storing calculated fields is a common normalization problem. In this
case, TotalCost need not be stored at all, since it can be calculated from ItemCost and Ordered when needed.

Earlier, we mention briefly a simplified 2NF definition, this is one such definition:

Second Normal Form (2NF) (“Simplified”)
A table is in 2NF if:

1. It is in 1NF and
2. Every non-key attribute is irreducibly dependent on the primary key.

We have already sufficiently addressed the 1NF qualification, and why it need not appear, but notice the slight difference in the
second qualification.

If a relation has only one candidate key, the above simplification is acceptable. This is because with only one candidate key, the
second qualification is equivalent to our 2NF definition. However, as we saw here, if a relation has multiple candidate keys, this
simplification is misleading, because it would require decomposition. Later we will see that such simplified discussion can
confuse things when dealing with higher normal forms. Because we are striving for accuracy, we mention this common
simplified definition only to reject it.

2.3.1 Optimal Second Normal Form

Optimal Second Normal Form (Optimal 2NF)
A collection of relvars is in Optimal 2NF if:

Every relvar in the collection is in 2NF
The collection contains the fewest possible relvars to meet the above requirement.

Here is our first normal form that deals with a collection of relvars, rather than an individual relvar. Fortunately, it is a very
gentle introduction to such normal forms. [Cod71] introduced Optimal 2NF.

This simply means that if there are multiple possible decompositions for a relvar into 2NF; choose the one resulting in the fewest
relvars. Our T1, T2 example is in optimal 2NF.

3 Actually, we are quite a bit past 2NF in this solution. Our goal is not to move from 1NF to 2NF, it is to satisfy the normal form we notice the
relation violating. If the solution then puts us at a higher normal form, that is more than acceptable.

Note that there could be more that one Optimal 2NF representation for a collection of relations [Dat99].

2.4 Third Normal Form (3NF)

Third Normal Form (3NF)
A relvar is in 3NF if:

It is in 2NF, and
Every nonprime attribute is directly dependent on each candidate key

Let us recall R from Fig 1.1 and our analysis of the FDs from 2.3:

Store Manager Location Status
Alpha Smith East Open
Beta Jones East Open
Delta Franks West Open
Gamma Wilson North Closed

Fig 1.1 – Revisited for 3NF
Again, remember we have identified two candidate keys for R: Store and Manager.

Let us check our table against the 3NF rule. We need to determine if each nonprime attribute is directly dependent on each
candidate key.

1. Store Location

True, directly given in ƒ3.
2. Store Status

A TD derived from ƒ3 and ƒ4
3. Manager Location

A TD derived from ƒ2 and ƒ3
4. Manager Status

A TD derived from ƒ2 and ƒ3 and ƒ4

Each nonprime attribute is not directly dependent on each candidate key, so the table is not in 3NF.

Again, the solution is decomposition by taking projections on attributes in R:

R1
Store Manager
Alpha Smith
Beta Jones
Delta Franks
Gamma Wilson

R2
Store Location
Alpha East
Beta East
Delta West
Gamma North

R3
Location Status
East Open
West Open
North Closed

Fig 2.6 – A 3NF decomposition of R

Note that joining these tables on Store and Location will give use the original data, so we have the desired lossless decomposition
and our original R can be restored. We have “split” each TD, preventing it from existing in our resulting tables.

Again, notice how our results have one relation per FD in the original relation. R1 corresponds to ƒ1 (andƒ2), R2 corresponds to
ƒ3, and R3 to ƒ4. Each resulting relation is in 3NF.

Like 2NF, sometimes the 3NF definition is sometimes simplified:

Third Normal Form (3NF) (“Simplified”)
A table is in 3NF if:

1. It is in 2NF and
2. Every non-key attribute is nontransitively dependent on the primary key.

And, as discussed for the simplified 2NF definition, this is acceptable if there is only one candidate key.

ƒ of R
ƒ1: Store Manager
ƒ2: Manager Store
ƒ3: Store Location
ƒ4: Location Status

Fig 2.4 – Revisited for 3NF

2.4.1 Optimal 3NF

Optimal Third Normal Form (Optimal 3NF)
A collection of relvars is in Optimal 3NF if:

Every relvar in the collection is in 3NF
No relation in C3 has a pair of attributes A and C where C is strictly transitively dependent on A in C2.
The collection contains the fewest possible relvars to meet the above requirements.

Where C2 is a collection of relvars in Optimal 2NF and C3 is a collection of relvars in 3NF derived from C2.

The definition of Optimal 3NF (from [Cod71]) is much more difficult than the actual concept.

Consider this alternate decomposition of R:

R1
Store Manager
Alpha Smith
Beta Jones
Delta Franks
Gamma Wilson

R2
Store Location
Alpha East
Beta East
Delta West
Gamma North

R3
Store Status
Alpha Open
Beta Open
Delta Open
Gamma Closed

Fig 2.7 – An alternate 3NF decomposition of R

We now compare this alternate decomposition to the Optimal 3NF definition:
1. Every relvar in the collection is in 3NF.
True (with the understanding of what we introduce in the next point).

2. No relation in C3 has a pair of attributes A and C where C is strictly transitively dependent on A in C2.
False. This is the problem, so let us examine it closely. C2 is a collection of relvars in Optimal 2NF (in this case a collection of
one relvar, R). C3 contains 3 relvars, R1, R2, and R3.

The problem is with R3. It contains a pair of attributes, Store and Status, where Status is strictly transitively dependent on Store
in R.

In R, the original 2NF relvar, we had:

ƒ3: Store Location
ƒ4: Location Status

Giving us the TD Store (Location, Status), which is strict because Status / Location and Location / Store.

Consider the effect of having Store and Status (the A and C in the definition) in R3; we have lost the fact entirely that Location
Status. ƒ4 is not represented anywhere in C3, and therefore can not be enforced (at the relvar or relation level). There is nothing
preventing us changing the Status of Alpha in R3 to Closed, which would violate our business rule that all stores in the same
location share the same status.

This idea is dependency preservation, meaning that dependencies in the original relvar exist in the relvars that remain after
decomposition. This is a very important concept, which along with lossless decomposition means that we retain the same
information – data and dependencies – when decomposing.

Compare, then, the alternate decomposition in Fig 2.7, with the original 3NF decomposition in Fig 2.6, which is in Optimal 3NF.

3. The collection contains the fewest possible relvars to meet the above requirements.
In Fig 2.7, this is irrelevant, because we did not meet the second requirement. However, in Fig 2.7, this is true.

As with Optimal 2NF, there could be more than one Optimal 3NF representation of the data.

2.5 Summary

In this section, we have introduced 1-3NF, giving definitions and examples for each normal form.

There are two interesting points to make about 3NF, before moving on to the higher normal forms:

• Achieving 3NF is always possible.[Ber76]
• If you are in 3NF with a simple key, then the relation is in PJ/NF as well.[Dat92]

So, if you have a simple key – then 3NF is “far enough”, because you are actually in PJ/NF, a much more stringent normal form.
Another way to think about it is with a simple key and in 3NF, then:

Every nonprime attribute is dependent on the key, the whole key, and nothing but the key.

However, as we will see in the section on higher forms, composite keys – keys with having two or more attributes – may
introduce considerations that 3NF does not address.

We also want to note that although we have tried to use the same (or a similar) relation throughout this section, we will not do so
in the upcoming section. There are two reasons for this:

1. We want to clearly illustrate the specific problem that each higher normal form addresses. This is hopefully made
simpler by constructing a relation that has the problem, rather than trying to “back-track” one example from PJ/NF to
1NF, ensuring it illustrates a violation at each step along the way.

2. More importantly, it is misleading to think that the normalization process starts with one large mass of unnormalized
data and then proceeds to 1NF, then to 2NF, then to 3NF, and so on. The normal forms provide a good test or set of
rules that a table can be checked against to ensure the designer has not overlooked some aspect of normalization.

Keep in mind that the normal forms are a formalization of “common sense”, and most experienced developers will have a “first
cut” of tables that is already in 3NF (or higher) without consciously stepping through each lower normal form.

3

HIGHER NORMAL FORMS

3.1 About the Higher Normal Forms
3.2 Boyce-Codd Normal Form
3.3 Fourth Normal Form
3.4 Projection-Join Normal Form

3.1 About the Higher Normal Forms

There are particular relations that can be in 3NF, yet still contain redundancy and therefore present the risk of anomalies.

There have been various normal forms proposed that exceed (or modify) 3NF. In this section, we discuss the three commonly
accepted: Boyce-Codd Normal Form, Fourth Normal Form, and Projection-Join Normal Form.

You only need concern yourself with the higher normal forms when you have composite keys.

That’s the good news. The bad news is if you do have composite keys, you’ll need to consider each of the higher normal forms
in turn, and they can be more difficult to understand than the basic normal forms.

3.2 Boyce-Codd Normal Form

Boyce-Codd Normal Form (BCNF)
A relvar is in BCNF if:

Every determinant is a candidate key.

The first thing we want to note about BCNF is that we don’t need to specify that the relation is already in 2NF or 3NF. This is
contrary to expectation, because we usually think about “progressing” through the normal forms, first achieving a lower normal
form, and then further refining those results to achieve the next normal form.

We can get away with this because BCNF rule encompasses the rules for 2NF and 3NF[Wer93].

Because of the second point, we will discuss two aspects of BCNF. The first aspect we want to discuss is using BCNF as a
“target” normal form to replace 2NF and 3NF rules. The second aspect is considering BCNF in its own right, as a stricter normal
form than 3NF.

It is also important to note that while the requirements for 2NF and 3NF were based on non-prime attribute dependencies, BCNF
requirements are based on determinants, which may be prime or non-prime attributes.

If you have a relation with a simple key, obviously there can’t be (nontrivial) dependencies within that key. All other attributes
must be non-prime attributes, so all dependencies must involve a non-prime attribute, and therefore the 2NF and 3NF rules can
handle those dependencies.

So then, it becomes clear why we can say BCNF (and higher) are only important when dealing with relations having a composite
key: because that is the only situation where a relation can have dependencies not involving a non-prime attribute.

3.2.1 BCNF is 2NF and 3NF

Let’s spend just a moment to revisit some previous examples to illustrate that the BCNF rule encompasses the previous rules for
2NF and 3NF. This time, instead of applying the 2NF or 3NF rules, we will simply apply the single BCNF rule:

2NF

Store Location Item Ordered
Alpha East Widget 10
Alpha East Gear 20
Beta East Widget 10
Delta West Gear 20

Fig 2.5 – Revisited for BCNF

We have two determinants, Store and {Store, Item}, and Store alone, although a determinant alone for Location, is not a
candidate key. Taking the same projections:

T1
Store Location
Alpha East
Beta East
Delta West

T2
Store Item Ordered
Alpha Widget 10
Alpha Gear 20
Beta Widget 10
Delta Gear 20

Fig 2.6 – Revisited for BCNF

Examining each resulting relation in turn:

 Determinant Candidate Key BCNF?
T1 Store Store Yes
T2 {Store, Item} {Store, Item} Yes

Fig 3.1 – Verifying BCNF

So we see that BCNF encompasses 2NF.

3NF
Let us recall R from Fig 1.1 and our analysis of the FDs from 2.3:

Store Manager Location Status
Alpha Smith East Open
Beta Jones East Open
Delta Franks West Open
Gamma Wilson North Closed

Fig 1.1 – Revisited for BCNF

We already know this table is in 2NF, but not 3NF. We want to analyze it for BCNF.

Looking over the ƒ of R, we see three determinants:

Store
Manager
Location

However, as we well know by now, R has only two candidate keys:

Store
Manager

Since every determinant is not a candidate key (Location is a determinant, but not a candidate key), R violates BCNF. To
decompose, we take projections over attributes in R, giving us the same result as our original 3NF decomposition:

R1
Store Manager
Alpha Smith
Beta Jones

R2
Store Location
Alpha East
Beta East

R3
Location Status
East Open
West Open

ƒ of R
ƒ1: Store Manager
ƒ2: Manager Store
ƒ3: Store Location
ƒ4: Location Status

Fig 2.4 – Revisited for BCNF

Delta Franks
Gamma Wilson

Delta West
Gamma North

North Closed

Fig 2.6 – Revisited for BCNF
Examining each resulting relation in turn:

 Determinant(s) Candidate Key(s) BCNF?
R1 Store, Manager Store, Manager Yes
R2 Store Store Yes
R3 Location Location Yes

Fig 3.2 – Verifying BCNF
So we see that BCNF encompasses 3NF.

3.2.2 BCNF is more than 3NF

There’s another aspect of BCNF, where we look at it not as a form that includes 2NF and 3NF, but as a separate normal form in
its own right. After all, BCNF is an improvement or stricter normal form, not an equivalent of 3NF.

This aspect of BCNF is important with a relation has two or more candidate keys, and those candidate keys share one or more of
the same attributes.

To illustrate this, we need a relation that is in 3NF, but not is BCNF. Call this relation B, and notice it is a slight variation of our
second 2NF example:

Store Manager Item Ordered
Alpha Smith Widget 10
Alpha Smith Gear 20
Beta Jones Widget 10
Delta Franks Gear 20

Fig 3.3 – A variation on Fig 2.5
The ƒ of B:

ƒ1: Store Manager
ƒ2: Manager Store
ƒ3: {Store, Item} Ordered

We have simply replaced Location with Manager, yet the table is now in 3NF. This change yields two candidate keys (with
Location there was only one candidate key): {Store, Item} and {Manager, Item}. This means that Ordered is the only nonprime
attribute in B. And, Ordered, the only non-prime attribute, is both fully functionally dependent on each candidate key (2NF), and
non-transitively dependent on each candidate key (3NF) 4. However, every determinant is not a candidate key (neither Store nor
Manager alone is a candidate key), so B does violate BCNF.

We decompose like so:

B1
Store Manager
Alpha Smith
Beta Jones
Delta Franks

B2
Store Item Ordered
Alpha Widget 10
Alpha Gear 20
Beta Widget 10
Delta Gear 20

Fig 3.4 – A BCNF decomposition of B
Compare Fig 3.4 to Fig 2.6. The results are very similar, but the reasoning is different.

3.2.3 BCNF is “Almost All You Need To Know”

BCNF prevents the anomalies that Codd originally identified, and was considered an improved or corrected definition for 3NF
[Hea71] [Cod74]. We have also shown that BCNF covers 2NF and 3NF requirements.

This raises two questions:

1. In practice, can we ignore 2NF and 3NF, and simply use BCNF?
2. Do we ever need go beyond BCNF?

Let us address the first question first: can we ignore 2NF and 3NF, and simply use BCNF?

4 Note that this relation violates the simplified 2NF or 3NF rules mentioned earlier. This is one reason why those simplified rules can be
confusing – they do not apply properly to multiple candidate keys.

Most of the time, yes. However, there is one important distinction between BCNF and 2NF and 3NF that prevents us from
saying “In all cases, yes”. That distinction is that although all relvars can be put in 2NF and 3NF with lossless decompositions
and preserve dependencies, there are certain relvars that can not be put in BCNF and preserve dependencies [Bee79]. We illustrate
with a new table, called Z:

Street City ZipCode
Main Springfield 20010

Fig 3.5 – A problematic relation
The ƒ of Z:

ƒ1: {Street, City} ZipCode.
ƒ2: ZipCode City.

Z has one candidate key: {Street, City}, and one nonprime attribute, ZipCode, which is directly dependent on that candidate key.
Z is in 3NF. However, Z has two determinates, {Street, City} and ZipCode, only one of which is a candidate key. Z is not in
BCNF. We can generalize this problem as giving the ƒ as: AB C, C B.

We could decompose like so:

Street ZipCode
Main 20010

City ZipCode
Springfield 20010

 Fig 3.4 – A possible BCNF decomposition of Z

Consider the decomposition in the light of Optimal 3NF – the problem is very similar. We have lost ƒ1 – the fact that ZipCode is
functionally dependent on {Street, City} is no longer reflected, and we have not preserved all dependencies originally in Z. To
illustrate, consider that there is nothing preventing the following:

Street ZipCode
Main 20010
Main 20020

City ZipCode
Springfield 20010
Springfield 20020

 Fig 3.5 – A problem

Streets can have multiple zip codes (in different cities), and a city can have multiple zip codes, so there is no problem with either
relation at the relation level. However, examine the join:

Street City ZipCode
Main Springfield 20010
Main Springfield 20020

Fig 3.6 – The join
ƒ1 no longer holds; in the join {Street, City} / ZipCode. From BCNF and upward, it may not be possible to maintain
dependency preservation. Generally, the advice is to continue normalizing, even if some dependencies are lost, but there are
differing opinions. Because of this, some relvars may be consciously left in 3NF in order to preserve dependencies, even when a
higher normal form could be achieved.

Understanding this, BCNF does handle all problems with functional dependencies, which brings us to our second question: do we
ever need to go beyond BCNF?

BCNF meets the definition given in [Pas04-2]: “A fully normalized table satisfies only FDs implied by the key, the whole key,
and nothing but the key.” One might then think that BCNF is indeed an acceptable stopping point; however, there are other,
more general dependencies than functional dependencies, and we need higher normal forms to address those more general
dependencies.

([Pas04-2] later generalizes the earlier definition: “A fully normalized table satisfies only dependencies implied by the key, the
whole key, and nothing but the key”. With this more general definition, we cover the coming higher normal forms.)

3.3 Fourth Normal Form

Fourth Normal Form (4NF)
A relvar is in 4NF if:

There are no independent non-trivial multivalued dependencies.

4NF was introduced to handle multivalued dependencies[Fag77]. You sometimes hear 4NF dismissed as so rare to be of theoretical
interest only. However, a study of 40 large real-world databases found “that data violating 4NF occurred at least once in nine
organizational databases constituting over twenty percent of the databases in [the] study.“[Wu92]

Even if the following examples seem unrealistic and a bit contrived, keep in mind 4NF violations are a real-world problem.

We begin by considering the following table T (based on Fagin’s original example in [Fag77]):

Employee Salary Year Child
Smith $9K 2000 Thomas
Smith $9K 2000 Andrea
Smith $10K 2001 Thomas
Smith $10K 2001 Andrea

Fig 3.5 – 4NF Violation

Now, there is only one candidate key for T, and that is all attributes. Therefore 1-3NF requirements are met. There are no
standard functional dependencies, so no determinants, so the above is in BCNF5. Still, it is obvious the table is “wrong”. 4NF
helps us formalize exactly what is wrong.

Consider the fact that an Employee has a certain set of children. There is therefore some type of dependency between the fields
Employee and Child. However, since more than one Child value can depend on the same Employee value, it is not a functional
dependency. We can not say that Employee Child, because one Employee could have multiple corresponding Child values.

This dependency is a multivalued dependency (MVD); one attribute (Employee) determines a specific set of values for another
attribute (Child)6. We notate like so:

Employee {Child}

The same applies for the Salary and Year. An Employee has a specific set of values for these two attributes:

Employee {Salary, Year}7

MVDs always go in pairs like this, so it is common to represent them in one notation, like so:
 Employee {Child} | {Salary, Year}

We generalize the above notation, and note that some references use curly braces on the right and others do not:
 A B | C

A MVD is trivial if only that multivalued dependency is in the table. These two MVDs are independent, because Child does not
affect (Salary, Year) and vice versa. So, we have a table with the two independent non-trivial multivalued dependencies, and are
thus in violation of 4NF. Note that having two independent trivial MVDs is one relation is not possible.

Just as we decomposed to isolate FDs in the resulting relations, we take a similar approach with MVDs. We need to separate
each MVD into a different relation to satisfy 4NF.

Knowing this, we can decompose as follows:

Employee Child
Smith Thomas
Smith Andrea

Employee Salary Year
Smith $9K 2000
Smith $10K 2001

Fig 3.6 – A 4NF Decomposition of Fig 3.5

Now in each relation there is only one MVD, so that MVD is trivial and both resulting relations are in 4NF.

Let’s consider a slightly different example:

Employee SSN Child
Smith 123-45-6789 Thomas
Smith 123-45-6789 Andrea

Fig 3.7 – Another 4NF Violation
Here are the dependencies in Fig 3.7:

Employee SSN
Employee {Child}

In this case we have two dependencies, a FD and a MVD. Is the table is 4NF8? No, because a FD is a type of MVD9, we actually
have two independent MVDs (and therefore non-trivial), and so the table violates 4NF.

5 This is a specific example of the general case of saying a table that is “all key” is in BCNF. No proper subset of attributes can form a candidate
key.
6 Note that this means a FD is a special case of a MVD, where the “multi” is equal to one.
7 This does not mean that Employee {Salary} and Employee {Year} are true. Take the latter; this would mean YEAREmployee, Salary,

Child is dependent only on Employee, which it is not. [Fag77] states Year and Salary are a “cluster”.
8 It is not in BCNF either, but that’s not what we are trying to illustrate here.
9 We could restate Employee SSN as Employee {SSN}

Decomposition is simple (and obvious):

Employee SSN
Smith 123-45-6789

Employee Child
Smith Thomas
Smith Andrea

Fig 3.7 – A 4NF Decomposition of Fig 3.6

One final 4NF illustration, this one more commonly encountered10:

Employee Project Activity
Smith Quality Assurance Support
Smith User Training Support
Smith Quality Assurance Debug
Smith User Training Debug
Jones Quality Assurance Support
Jones User Training Support
Jones Quality Assurance Debug
Jones UserTraining Debug

Fig 3.8 – A final 4NF Violation
Assume the business rules:

1. An Employee can be assigned to any Project
2. An Employee can be assigned to any Activity
3. No matter what Project an Employee is assigned to, he is assigned the same Activity.
4. A Project can be assigned to multiple Employees.
5. An Activity can be assigned to multiple Employees.

It is business rule #3 which makes the two MVDs, Employee Project | Activity independent – it doesn’t matter which
Project the Employee is assigned, he will have the same Activity within that Project as any other Projects he may be assigned.
Understanding this point is crucial to understanding 4NF (and PJ/NF, as we will see).

Problems with the table in Fig 3.8? There is the obvious redundancy, and several opportunities for update anomalies:

An Employee can’t be assigned a Project without having an Activity.
An Employee can’t be assigned an Activity without having a Project11.
An Employee only assigned to one Project can’t be removed without deleting all assigned Activities.
An Employee only assigned to one Activity can’t be removed without deleting all assigned Projects.

Decomposition is obvious enough, each MVD to a relation:

Employee Project
Smith Quality Assurance
Smith User Training
Jones Quality Assurance
Jones User Training

Employee Activity
Smith Support
Smith Debug
Jones Support
Jones Debug

Fig 3.9 – A 4NF Decomposition of Fig 3.8

There are some other interesting things Fagin proved when introducing 4NF:

• If a relation is in 4NF it is in BCNF.
• All relations can be put in 4NF (but, not necessarily with dependency preservation).

10 This particular example is adopted from [Pas04-2]
11 Remember, no NULLS allowed!

3.4 Projection – Join Normal Form

Projection-Join Normal Form (PJ/NF)
A relvar is in PJ/NF if:

Every nontrivial join dependency is the result of a key

3.4.1 Join Dependencies

Just as 4NF was introduced to deal with multivalued dependencies, which are a generalized form of functional dependencies –
PJ/NF is introduced to deal with join dependencies (JDs), which are in turn a generalized form of multivalued dependencies.

First, consider the following simple process:

1 Store SName Employee

13 Mint Shop Jones
13 Mint Shop Frank

R{Store, SName, Employee}
Store SName
Store {Employee}

This is our original relation.
2 Store SName

13 Mint Shop
Store Employee
13 Jones
13 Frank

Take the projections R1 and R2:
R1 = {Store, SName}
R2 = {Store, Employee}

Here we take some projections.
3 Store SName Employee

13 Mint Shop Jones
13 Mint Shop Frank

R1 ⋈ R2

And finally, we join.

Fig 3.10 – A Join Dependency Illustration

In the above we had a relation R, from which we derived the set of projections {R1, R2}. Notice then the join of those projections
resulted in R, the original relation. Because of this, we can say that R obeys the JD ∗{R1, R2}. If the join did not result in the
original relation we could say ∗{R1, R2} does not hold for R.

The JD, like all dependencies, specifies a constraint. In the case of the JD *{R1, R2}, this constraint means every instance of R
should have a lossless decomposition into R1 and R2. [Orl92] Specifically, we can expand the attribute names of R1 and R2 and say
that R has the JD: *{(Store, SName), (Store, Employee)}.

3.4.1.1 Relating the Dependencies

When [Fag71] introduced 4NF, he showed:
 A B | C holds for R, iff R is the join of the projections R1 (A, B) and R2 (A, C)

Restating this, it clearly shows that a MVD is a special case of a JD, meaning the JD generalizes the MVD, just as the MVD
generalizes the FD:
 A B | C ≡ *{AB, AC}

Consider the dependencies in R:
 Store SName
 Store Employee

Since a FD is a special case of a MVD, we can rewrite the above using only MVDs:
 Store SName | Employee

And, following with our proof from [Fag71], we can rewrite the above using a JD:
 *{(Store, SName), (Store, Employee)}

3.4.1.2 Relating the Normal Forms

[Fag79] provided new alternative definitions for BCNF and 4NF which help illustrate the relationship between these forms12:

12 Note the similar effect alternative definitions have in the EKNF discussion in Appendix E in relating several normal forms.

Let R be a relation, and let ∆ be the set of key dependencies of R. R is in the stated normal form if:
BCNF

∆ ⊧ σ for each FD in R
4NF

∆ ⊧ σ for each MVD in R
PJ/NF

∆ ⊧ σ for each JD in R

In this definition, key dependencies are equivalent to candidate key. [Fag79] also notes that the definitions work if superkeys are
considered instead of candidate keys.

3.4.2 PJ/NF Illustrated

To illustrate PJ/NF, consider this example from [Ken83]:

Agent Company Product
Smith Ford Car
Smith Ford Truck
Jones GM Car

Fig 3.11 – A PJ/NF Violation

Here, assume the following business rules:

1. An agent represents many companies and sells many products.
2. A company makes many products, and each product is produced by many companies.
3. If an agent represents a company that makes a product the agent sells, then the agent sells that product for that

company.

There is a MVD in the above13, corresponding to rule 1:

Agent Product | Company

Rule 2 could be represented with the following:
 Company {Product}
 Product {Company}

However, consider rule 3 carefully. This constraint can neither be represented as a functional dependency nor as a multivalued
dependency. However, it can be represented as a join dependency. This is an example of a JD that is not a MVD.

Remember that MVDs are a special case of JDs. So, we can rewrite the MVDs as JDs, and include rule 3:

∗{(Agent, Product), (Agent, Company)}
∗{Agent, Company}
∗{Company, Product}

Let us take those projections:

Agent Company
Smith Ford
Jones GM

Company Product
Ford Car
Ford Truck
GM Car
GM Truck

Agent Product
Smith Car
Smith Truck
Jones Car

Fig 3.12 – A PJ/NF Decomposition of Fig 3.11

If we join the above relations, the result is the original table. So, we can say that the original table obeys the join dependencies
we identified. Each of the resulting projections is in PJ/NF. We have normalized our original table using projections and joins.

Let us now consider an incorrect attempt at the above – the purpose of this attempt is to illustrate what some call a cyclic
dependency. Perhaps one might try to analyze the table like so:

Agent {Product}
Company {Product}

This would suggest the following projections:

Agent Product
Smith Car

Company Product
Ford Car

13 So, it is not in 4NF. However, we analyze for PJ/NF to illustrate several points about PJ/NF.

Smith Truck
Jones Car

Ford Truck
GM Car
GM Truck

Fig 3.13 – A PJ/NF Decomposition???

At first glance, this may look acceptable; after all we have “covered” all the columns. However, examine the results of the join:

Agent Company Product
Smith Ford Car
Smith Ford Truck
Smith GM Car
Smith GM Truck
Jones GM Truck
Jones GM Car

Fig 3.14 – The incorrect resulting join

Notice the shaded area, indicating rows that did not exist in the original relation. Because our identified dependencies are not
sufficiently represented – the Agent and Company relationship is not expressed – we have a lossy decomposition – not
acceptable.

We can also say that original table does not obey the join dependencies ∗{Agent, Product} and ∗{Company, Product}. It’s clear
that these two dependencies can’t accurately represent all the dependencies we laid out in our assumptions. Because each pair of
attributes exhibits a dependency on another pair of attributes, there is the cyclic dependency we noted earlier.

Consider the original table again, but add the assumption that an agent can not work for two companies that produce the same
product. With this new assumption, the table is in 4NF.

This is because the assumption affects the MVDs:

Agent {Company} | {Product}

These are no longer independent, because under the new assumption the product an agent carries affects which company the
agent may represent14.

This leaves us with something like15:

Agent {Company, Product}
Company {Product}

These MVDs are clearly not independent (the second is a subset of those attributes present in the right hand side of the first), so
4NF is no help here. However, the same problem remains in respect to PJ/NF, and decomposition on the three projections we saw
earlier is now required by PJ/NF16. This becomes an example of 4NF not being strict enough, so PJ/NF is required to address the
problems.

Let us now revisit a previous 4NF example17:

Employee Project Activity
Smith Quality Assurance Debug
Smith User Training Support
Jones Quality Assurance Support
Smith Quality Assurance Support

Fig 3.15 – Another PJ/NF Violation
We restate the business rules, changing #3 slightly:

1. An Employee can be assigned to any Project
2. An Employee can be assigned to any Activity
3. If an Employee is assigned to a Project and Activity, and the Project has that Activity, then Employee has that Activity

within that Project.
4. A Project can be assigned to multiple Employees.
5. An Activity can be assigned to multiple Employees.

14 This is a similar situation to the YEAREmployee, Salary, and Child example in the 4NF discussion.
15 We say “something like” because this notation doesn’t correctly reflect all the dependencies present.
16 As we noted earlier, the first version of the table violated 4NF, so we could have attempted decomposition on that basis, rather than a PJ/NF
violation.
17 Again, this example is adopted from [Pas04-2]

As we have already seen, a change in the business rules has normalization implications. Under our new rule #3, Project and
Activity assignments are no longer independent, as one affects the other. This subtle distinction makes all the difference in
analyzing the normal form violations, and is an example of “you can’t tell what normal form you are in unless you know the
business rules.”

Here is the decomposition:

Employee Project
Smith Quality Assurance
Smith User Training
Jones Quality Assurance

Employee Activity
Smith Debug
Smith Support
Jones Support

Project Activity
Quality Assurance Debug
Quality Assurance Support
User Training Support
Fig 3.16 – A PJ/NF Decomposition of Fig 3.15

Note in this example, the tuple {Smith, User Training, Debug} is not valid, as the User Training Project does not have the Debug
Activity. The same tuple would be valid under the earlier rule #3 (in fact, it would be required). The 4NF example can not
handle the JD *{(Employee, Project), (Employee, Activity), (Project, Activity)}.

That JD was not in effect under the business rules given in the 4NF discussion, but based on an examination of the table alone,
without knowledge of the business rules; one could not determine exactly how to decompose the original table.

As a final note here, the study in [Wu92] turned up no PJ/NF violations, suggesting such problems are extremely rare in
practice18.

3.4.2 Is PJ/NF 5NF?

From the introduction of [Fag79], the paper that introduced PJ/NF:

We note that PJ/NF could logically be called ‘fifth normal form”, since it is stronger than fourth normal form.
However, we instead choose to call it projection-join normal form for several reasons. First, we wish to emphasize its
finality with respect to the projection and join operators. Second, we feel that from now on, it will be desirable to
explicitly point out the relationship between normal forms and the allowed relational operators.

Despite this, PJ/NF was often referred to as 5NF. This didn’t matter much until [Mai83] introduced project join normal form
(PJNF). The similar names caused some confusion, and to make things worse, many people discovered an error in [Mai83],
which led to several proposed “corrected” 5NF definitions.

However, most people refer to Fagin’s Projection-Join Normal Form as 5NF.

In some formal literature, [Fag79] is projection-join normal form (PJ/NF), and [Mai83] project-join normal form is called 5NF, to
help distinguish the two. We adopt this practice throughout this paper, which is why there is no treatment of a “5NF” in the main
body.

In Appendix E the following normal forms are discussed which are related to this discussion, all of which address PJ/NF and/or
correcting [Mai83]:

• Key Complete Normal Form
• Redundancy Free Normal Form
• Reduced Fifth Normal Form
• Project Join Normal Form (5NF)
• Superkey Normal Form
• Q-5NF
• 5NF (Khodovskii’s)

18 [Wu92]: “Data violating 5NF did not occur in any of the databases which may indicate that 5NF is only an academic issue.”

APPENDIX A

NOTATION

Set Theory

∈ Set membership

∅ Null set

⊂ Proper subset (not equal)

⊆ Subset

∩ Intersection

∪ Union

⎯ Difference

{A,B} Set containing A and B

Logic

⇒ Logical Implication

≡ Identical to

⊧

Logical Consequence -whenever the left hand side holds, so does
the right hand side, and there is no possible counterexample to
the contrary.
Example:{A B, B C} ⊧ A B

Relational Theory

AB A ∪ B (When A and B are sets of attributes)
{A, B} (When A and B are single attributes)

A B Functional dependency FD

A(B,C) Transitive dependency TD

A B Multivalued dependency MVD

A B|C Embedded multivalued dependency EMVD

∗{R1,R2} Join dependency JD

IN(A, S) Domain dependency DD

KEY(K) Key dependency KD

Ri[X]⊆Rj[Y] Inclusion dependency IND

Ri[X]⏐Rj[Y] Exclusion dependency EXD

⋈ Join

⏐A⏐ Cardinality of A

APPENDIX B

INFERENCE RULES

Functional Dependencies
 Armstrong’s three original axioms[Arm03] Derived[Bee77][Zan82]:
(FD1) Reflexivity
If B ⊆ A, then A B

(FD4) Pseudotransitivity
If A B, and BC D, then AC D

(FD2) Augmentation
If A B, then AC BC

(FD5) Union
If A B, and A C, then A BC

(FD3) Transitivity
If A B, and B C, then A C

(FD6) Decomposition
If A B, then A b, for every b in B

Example:
Consider the set of FDs: {ABC D, B A}

We want to know if ABC D is an elementary functional dependency.

1. B A = BBC ABC (FD2) Augmentation
2. BBC ABC = BC ABC (FD1) Reflexivity
3. BC ABC D (FD3) Transitivity

Since ABC D and BC D, then ABC D contains a non-required attribute (A) on the left hand side
and is therefore not an elementary functional dependency.

Manager Store Week Promotion
Smith 27 1 Donuts
Smith 27 2 Cola
Jones 13 1 Toothpaste

Here we map our dependencies to the example like so:

• (Manager, Store, Week) Promotion (ABC D)
• Store Manager (B A)

It is obvious (Store, Week) is sufficient to determine Promotion, and that Manager is extraneous.

The FD axioms and inference rules above are the most commonly used. The rules that follow cover the more
general types of dependencies.

Multivalued Dependencies[Bee77]
(MVD0) Complementation
If B ∩ C ⊆ A, then A B iff A C

(MVD4) Pseudotransitivity
If A B, and BD C, then
AD C ⎯ BD

(MVD1) Reflexivity
If B ⊆ A, then A B

(MVD5) Union
If A B1, and A B2, then A B1B2

(MVD2) Augmentation
If C ⊆ D, and A B, then AD BC
(MVD3) Transitivity
General Case
If A B, and B C, then A B ⎯ C
Special Case of B and C being disjoint
If A B, and B C, then A C

(MVD6) Decomposition
If A B1, and A B2, then
Intersection[Sil01]
 A B1 ∩ B2,
Difference[Sil01]
 A B1 ⎯ B2, and A B2 ⎯ B1

Functional Dependencies and Multivalued Dependencies[Bee77]
(FD-MVD1) Replication
If A B, then A B
(FD-MVD2) Coalescence
If A C, and B C’, then A C’
Where B∩C=∅
(FD-MVD3)
If A B, and AB C, then A C ⎯ B

Inclusion Dependencies
Given[Cas83][Cas84-2] Derived [Mit83]
(IND1) Reflexivity
R[X] ⊆ R[X]
if X is a sequence of distinct attributes of R

(IND4) Substitutivity of Equivalents
If AB ⊆ CC, σ ∈ Σ, then τ
where τ is obtained from σ by substituting A for one or more
occurrences of B

(IND2) Projection & Permutation
If R[A1 … Am] ⊆ S[B1 … Bm], then

]BB[S]AA[R
kk iiii LK

11
⊆

for each sequence i1 … ik of distinct integers from {1 … m}

(IND5) Redundancy
If U ⊆ V ⊂ Σ then UX ⊆ VY,
where X ⊆ Y follows from U ⊆ V by a single application of
IND2

(IND3) Transitivity
If R[X] ⊆ S[Y] and S[Y] ⊆ T[Z], then
R[X] ⊆ T[Z]

Functional and Inclusion Dependencies[Mit83]
(FD-ID1) Pullback
If UV ⊆ XY, X Y then U V, where ⏐X⏐= ⏐U⏐
(FD-ID2) Collection
If UV ⊆ XY, UW ⊆ XZ, X Y then UVW ⊆ XYZ, where ⏐X⏐= ⏐U⏐
(FD-ID3) Attribute Induction
If U ⊆ V, V B, then UA ⊆ VB, where A is an attribute that does not appear in Σ

Exclusion Dependencies[Cas83]
(EXD1)
If R[X] ⏐ S[Y], then S[Y] ⏐ R[X]
(EXD2)
If]AA[S|]AA[R

mm 1111 11
LK , then R[A1 … An] | S[B1 … Bn]

(EXD3)
If R[X] | R[W], then R[Y] | S[Z]
Where R[X] | R[W] is vacuous

Inclusion and Exclusion Dependencies[Cas83]
(IND-EXD1)
If R[X] | R[W], then R[Y] ⊆ S[Z]
Where R[X] | R[W] is vacuous
(IND-EXD2)
If R[X] ⊆ S[Y], T[W] ⊆ U[Z], and S[Y] | U[Z], then R[X] | T[W]

Full Join Dependencies[Sci82]
(JD0)

∅ ⊧ ⋈[X] for any set X
(JD1)

⋈[S] ⊧ ⋈[S, Y], if Y ⊆ S
(JD2)

⋈[S, Y, Z] ⊧ ⋈[S, YZ]
(JD3)

{⋈[S, Y], ⋈[R]} ⊧ ⋈[S, R] if R = Y

(JD4)

⋈[S, YA] ⊧ ⋈[S,Y] if A ∉ S
(JD5)

{⋈[S, Y], ⋈[R]} ⊧ ⋈[S, Y1 ∩ Y … Ym ∩ Y]
Where:
⋈[S,Y] and ⋈[R] are full JDs such that A ⊆ Y
and A appears in more than one relation scheme and
R = {Y1 … Ym}

Embedded Multivalued Dependencies[Par80]
(EMVD0) Complementation
If A B|C, then A C|B

(EMVD4) Intersection
If A B|C, and A D|E, then
A B∩D|B∩E
Where B∩D= ∅ and B∩E=∅

(EMVD1) Projection
If A BC|D, then A B|D
(EMVD2) Root Weighing
If A BC|D, then AB C|D
(EMVD3) Decomposition
If A B|CD, and AB C|D, then
A C|D

(EMVD5) Pseudo-transitivity
If A B|CDE and BC D|AF, then
AC D|BF
Where A,B,C,D,E is disjoint and A,B,C,D,E,F is disjoint

Functional Dependencies and Embedded Multivalued Dependencies[Par80]
(FD-EMVD1)
If A B|C and B C, then A C
(FD-EMVD2)
If A B|C and AB D, then A BD|C

Multivalued Dependencies and Embedded Multivalued Dependencies[Par80]
(MVD-EMVD1) Joinability
If A C, then AB C and A B|C
(MVD-EMVD2) Union
If AB DE and AC DF and A B|C, then A DEF
Where F ⊆ B and E ⊆ C

Transitive Dependencies[Par80]
(TD1) Reflexivity
If B ⊆ A, or C ⊆ A then A(B,C)

(TD5) Transitivity
If A(B,C) and B(C, D) then AD(B,C)

(TD2) Symmetry / Complementation
Iff A(C,B), then A(B, C)

(TD6) Union
If A(B,D), A(C,D) and D(B, CD), then A(BC, D)
(TD6a)
If A(B, CD) and A(C,D), then A(BC, D)
(TD6b)
If A(BE, D), A(CE, D), DE(B,CD), then A(BC,D)

(TD3) Projection
If A(BC, D), then A(B,D)

(TD7) Root Shifting
If AB(AC, BD), then AB(C, ABD)
Where A,B,C,D are disjoint

(TD4) Root Augmentation
If A(B,C), then AD(B,C)

(TD8)
If A(B,D), B(C, DX), D(E, BX), X(BE,CD), then A(BC, DE)

APPENDIX C

GLOSSARY

Attribute
Analogous to a column in a table, an attribute is a property of an entity
Attribute, Non-prime
An attribute not in a candidate key of a relation. Sometimes called a non-key attribute.
Attribute, Prime
An attribute in a candidate key of a relation. Sometimes called a key attribute.
Closure
The set of all functional and multivalued dependencies implied by a given set of functional and multivalued
dependences.

If D is the given set, then we notate the closure as D+.
Closure, Minimal
A set of FDs (G), derived from a set of given FDs (D), where:

G+ = D+ (We can derive all the same dependencies from G as we can from D)
Every FD in G has only one attribute on the right side
Every FD in G is required
Every FD in G is elementary

Decomposition
Splitting a relation into two or more relations.
Decomposition, Lossless
Decomposition that when joined to form the original relation contains the same data.
Decomposition, Lossless, Minimal
A lossless decomposition is minimal if no proper subset of that decomposition is itself as lossless
decomposition.

See Also: Dependency, Join, Strong-Reduced
Dependency, Domain
A is an attribute and S is a set of values. The domain dependency IN(A, S) indicates every A value must be
in set S.
Dependency, Exclusion
The exclusion dependency Ri[X] ⏐Rj[Y] is valid iff R1[X] and Rj[Y] are disjoint. Abbreviated EXD.
Dependency, Exclusion, Trivial
If Ri is in a vacuous EXD, then any EXD of the form Rj [Xj] | Ri [Xi], where |Xj| = |Xi| is always valid, and
therefore trivial.
Dependency, Exclusion, Vacuous
The exclusion dependency Ri[X] ⏐Rj[Y] is vacuous iff R1 =∅.
Dependency, Functional
If A determines B, that is for any given value of A there is exactly one corresponding value of B, there is
the functional dependency we notate as A B. Abbreviated as FD.
Dependency, Functional, Direct
If A C, and there is no B such that A B and B C, then there is a direct functional dependency.
This is also called a non-transitive dependency.
Dependency, Functional, Elementary
A non-trivial full functional dependency.

Dependency, Functional, Full
If A B, and A has two or more attributes, and B is not dependent on any subset of A, this is a full
functional dependency.
Dependency, Functional, Single-Valued

See Dependency, Functional
Dependency, Functional, Transitive
If A B and B C, then there is a transitive functional dependency between A and C. This is often
shortened to transitive dependency.
Dependency, Functional, Transitive, Strict
If A B and B C, but C B and B C do not hold, there is a strict transitive functional dependency
between A and C. This is often shortened to strict transitive dependency.
Dependency, Functional, Trivial
If B is a subset of A, then A B. This is a trivial functional dependency. If A only contains one attribute,
this means A A, which is also a trivial functional dependency.
Dependency, Inclusion
The inclusion dependency R [A1 … Am] ⊆ S [B1 … Bm] holds for a database if for each tuple in relation R
is also in relation S. R and S could be the same relation. Abbreviated as IND.

If the inclusion dependency Ri[X] ⊆Rj[Y] is valid, then Ri[X] is a subset of Rj[Y].
Dependency, Join
If R is the join of its projections R[X1] … R[Xn], we say it obeys the join dependency ∗{X1 … Xn}
Dependency, Join, Reduced
A join dependency ∗{X1 … Xn} is reduced if it is total and Ri ⊈ Rj for all i, j, i ≠j

Dependency, Join, Strong-Reduced
Let Σ be a set of FDs and JDs. A join dependency ∗{X1 … Xn} in Σ+ is strong-reduced if it is total and for
every component the JD obtained by removing that component is either not in Σ+ or it is not total.

See Also: Decomposition, Lossless, Minimal
Dependency, Join, Total
A join dependency ∗{X1 … Xn} is total if R = X1 … Xn
Dependency, Join, Trivial
For the projections R[X1] … R[Xn], a trivial join dependency exists in the join dependency
∗{X1 … Xn} if one of the Xi is R.
Dependency, Key
In a relation R with attributes X, the key dependency KEY (K) says that K is a superkey.
Dependency, Multivalued
If A determines a specific set of possible values for B, there is a multivalued dependency we notate as A

 {B}. Abbreviated as MVD.

In R(X, Y, Z), X Y if YXZ depends on Y, and is independent of Z: a multivalued dependency.
Dependency, Multivalued, Embedded
An embedded multivalued dependency X Y|Z exists when X, Y, and Z are all in the same relation.
Dependency, Multivalued, Essentially
A multivalued dependency X Y|Z is essentially multivalued if it is not trivial and neither X Y
nor X Y is a functional dependency.
Dependency, Multivalued, Trivial
A relation has a trivial multivalued dependency when only those attributes involved in the dependency are
in the relation.
In R(X, Y), if X Y, a trivial multivalued dependency.
In R(X, Y, Z), if (X, Y) Z, a trivial multivalued dependency.
Dependency Preservation
A decomposition that groups the same function dependencies that existed in the original relation is said to
observe dependency preservation.

Iff
If, and only if
Join
A join of two relations on a common attribute links the tuples of the two relations that share that attribute.
Unless otherwise noted, join means a natural or equal join.

X1
Store SName
27 Apple House
13 Mint Shop

X2
Store Location
27 East
13 West

Join
on

Store

R = X1 ⋈ X2
Store SName Location
27 Apple House East
13 Mint Shop West

Key, Candidate
An attribute or set of attributes that uniquely identifies a tuple, and has no attribute not necessary to
uniquely identify a tuple. Usually, this is what is meant if only the word key is used.
Key, Elementary
A key (X) is said to be an elementary key, if for some attribute (A), X A is an elementary functional
dependency
Key, Super
An attribute or set of attributes that uniquely identifies a tuple. Equivalently, a set of attribute that contains
a candidate key.
Projection
A projection of a table for some attributes X, is the set of tuples consisting only of those attributes in X. If
two resulting sets of tuples are the same, they are merged into a single tuple.

Store SName Employee
27 Apple House Smith
27 Apple House Jones
27 Apple House Franks

Projection on X, where

 X{Store, SName}

Store SName
27 Apple House

Relation
Analogous to a table, a relation is a collection of data organized according to certain rules, representing a
part of a (or a complete) entity.
Tuple
Analogous to a row of a table, a tuple represents a specific occurrence or example of a relation.

APPENDIX D

CHEAT SHEET

1NF
A direct and faithful representation of a relation.

• The rows are not ordered.
• The columns are not ordered.
• There are no duplicate rows.
• Every row/column intersection contains exactly one domain value

and nothing else.
• No irregular columns.

2NF
Every non-prime attribute is fully functionally dependent on
each candidate key.

• An attribute is non-prime if it is not in a candidate key.
• A candidate key identifies a record and contains only attributes

required to do so.
• Fully functionally dependent means on every attribute in the key.

3NF
Every non-prime attribute is directly dependent on each
candidate key.

• Directly dependent means A C, not A B C

BCNF
Every determinant is a candidate key.

• A determinant is one value that determines another value (one-to-
one).

Functional
Dependencies

4NF
There are no independent non-trivial multivalued dependencies.

• A multivalued dependency is one value determining a set of other
values (one-to-many).

• Independent means there are two or more present.
• Non-trivial means the right hand side is not exactly equal to the left

hand side.

Multivalued
Dependencies

PJ/NF
Every nontrivial join dependency is the result of a key.

• A join dependency is a set of projections that join to form the
original table.

• Non-trivial means that one of the projections is not the same as the
original table.

Join
Dependencies

APPENDIX E

OTHER NORMAL FORMS
There are many other normal forms, not covered in the main body of this paper, which address various aspects of database
design. We define and briefly discuss these normal forms in this appendix.

TNF Third Normal Form
EKNF Elementary Key Normal Form

(3,3)NF (3,3)NF
LTKNF Improved Third Normal Form

Improved Boyce-Codd Normal Form
PSJU/NF Projection Split Join Union Normal Form

Overstrong PJ/NF
5NF Project-Join Normal Form

Tight Fourth Normal Form
5NFR Reduced Fifth Normal Form
KCNF
RFNF

Key Complete Normal Form
Redundancy Free Normal Form

Q-5NF Q-5NF
SNF Superkey Normal Form

DK/NF Domain Key Normal Form
IDNF Inclusion Dependency Normal Form
IN-NF Inclusion Normal Form

VRFNF
ARFNF
RFNF
IDNF

IFIDNF

Value Redundancy Free Normal Form
Attribute Redundancy Free Normal Form
Redundancy Free Normal Form
Inclusion Dependency Normal Form
Interaction Free Inclusion Dependency Normal Form

ERNF Entity-Relationship Normal Form
ONF Object Normal Form
6NF Sixth Normal Form
ONF

4ONF
5NF

5ONF
6NF

6ONF

Object-Normal Form
Fourth Object-Normal Form
Fifth Normal Form
Fifth Object-Normal Form
Sixth Normal Form
Sixth Object-Normal Form

 “Restriction-union” Normal Form

Notation used in this appendix

R A relation
σ A dependency (type of which will be specified)
J Set of JDs
I Set of INDs
E Set of EXDs
D A database scheme

Third Normal Form

“Unacceptable File Operations in a Relational Data Base”
Proc. ACM SIGFIDET Workshop, San Diego, 1971

I.J. HEATH

Third Normal Form (TNF)
R is in TNF if:

Every determinant is an ID
No field is dependent on two determinants

An ID is a candidate key where no attribute in that candidate key is dependent on another attribute within the candidate key.

This is equivalent to BCNF, and is considered the first published definition of BCNF, even though it uses the name “Third
Normal Form” [Dat04].

This paper is also the source of Heath’s Theorem which is given exactly in [Hea71] as:

Theorem: A relation R (A, B, C), where A determines B, is the natural join J of R [A, B] and R [A, C].
(Note: R [A, B] means the projection of R on fields A and B.)

Heath’s Theorem explains why we can have a lossless decomposition for certain relations, although it does not explain why some
decompositions are lossy [Dat04]. [Fag77] has a stronger version of Heath’s Theorem which includes multivalued dependencies for
4NF, and cover lossless and lossy decompositions.

Elementary Key Normal Form

“A New Normal Form for the Design of Relational Database Schemata”
ACM Transactions on Database Systems 7(3), September 1982

CARLO ZANIOLO

Restricting our discussion to functional dependencies, we can still be unsatisfied in the area of 3NF – BCNF. 3NF is not strict
enough, and BCNF is too strict, in the sense that not all relations can be put in BCNF and retain all functional dependencies. It is
also unclear from our main definitions exactly why BCNF is a stricter form than 3NF.

The main concept to introduce here is the elementary functional dependency, which is simply a non-trivial full functional
dependency. It follows from here that an elementary key is a key having elementary functional dependency, and that an
elementary key attribute is an attribute belonging to an elementary key.

Armed with this new concept, we can achieve two interesting things. First, we can introduce a new normal form, Elementary
Key Normal Form, which “lies between” 3NF and BCNF, and we can give alternative definitions for 3NF and BCNF that make it
clear there is an increase in the restrictions we apply to the relations and we move from 3NF to BCNF.

Here are the new definitions, including the new normal form.

R is in the stated normal form iff for every elementary FD of R, say X A:

3NF

1. X is a key for R, or
2. A is a key attribute for R.

EKNF

1. X is a key for R, or
2. A is a elementary key attribute for R.

BCNF

1. X is a key for R

Note how each form gradually tightens the exception the second rule provides, until it is removed altogether for BCNF. This
clearly illustrates BCNF is a stricter form than 3NF.

Because of the above elegance of the new definitions it is also easy to see that:

BCNF ⇒ EKNF ⇒ 3NF

Finally, it is proved that the algorithm to put relations in 3NF in [Ber76] actually results in relations that are in EKNF. It follows
then that all relations can be put in EKNF.

(3, 3)NF

“A Normal Form for Abstract Syntax”
Proc. 4th Conf. Very Large Data Bases, Berlin, 1978

J.M. Smith

(3, 3)NF is closely related to BCNF. First, compare the definitions:

BCNF
R is in BCNF if each nontrivial FD in R is from a key in R.

(3,3)NF
R is in (3,3)NF if for each subset of R, each nontrivial FD in that subset is from a key in R.

The first “3” in (3, 3) NF corresponds to BCNF (BCNF is sometimes called “Boyce-Codd Third Normal Form” or just “Third
Normal Form”), in that the components of the relation are under consideration.

The second “3” in (3, 3) NF indicates that the categories of the attributes are under similar consideration. Since this is where (3,
3) NF differs from BCNF (and indeed differs from almost every other normal form except PSJU/NF and DK/NF), we want to
examine this aspect further.

From one of several examples in [Smi78], we consider this table, call it P_ROLE:

Person Role
P1 man
P1 musician
P1 engineer
P2 woman
P2 firefighter

Accept that a person has two types of roles: a sex role, of which there is exactly one for each person, and a professional role, of
which there can be many for each person.

The above table is in PJ/NF19, yet there is an obvious problem, namely nothing prevents the insertion of the tuple (P1, woman),
which violates our rule that a person has only one sex role.

The decomposition is simple, but it is not as we usually perform decomposition through projections, but rather through a split:

Person SexRole
P1 man
P2 woman

Person ProfessionalRole
P1 musician
P1 engineer
P2 firefighter

Note that it follows from the definition that (3, 3) NF ⇒ BCNF.

19 It is not, however, in PSJU/NF or DK/NF. In fact, this same example is used in [Fag81] in explaining DK/NF and in [Fag79] for PSJU/NF.

Improved Third Normal Form
Improved Boyce-Codd Normal Form

“An Improved Third Normal Form for Relational Databases”
ACM Transactions on Database Systems 6(2), June 1981

T. LING, F. TOMPA, and T. KAMEDA

Improved 3NF
Ri in a preparatory relation PR is in improved third normal form if each nonessential attribute is not restorable in Ri.

Similar to Optimal 3NF, Improved 3NF considers a set of relations.

Consider Example 1 from [Lin81]:
Given a relation R, this is our preparatory relation:

{A, B, C, D, E, F}
Assume these FDs20:

{AB CD, A E, B F, EF C}
And consider this decomposition into a set of 3NF relations, with the primary key underlined:

R1 : ABCD
R2 : AE

R3 : BF
R4 : EFC

The problem is there is no way to ensure the C value in R1 corresponds to the C value in R4.

The C in R1 is not transitively dependent on AB, but it is superfluous meaning it is restorable and nonessential.

It is restorable because its value in R1 can be derived from the other attributes in PR.
It is nonessential because it value is not required to derive the value of any other attributes in PR.

So, while R4 is in 3NF, it is not in Improved 3NF. It is also shown that if a relation is in Improved 3NF, then it is in 3NF as well.

Improved 3NF is sometimes called LTK Normal Form, after the originators.

Improved BCNF
Ri in a preparatory relation PR is in improved Boyce-Codd normal form if no attribute is restorable in Ri.

It is shown that a relation in improved BCNF is also in both BCNF and improved 3NF.

See also Inclusion Normal Form (IN-NF) for an extension of this approach.

20 A possible set of values:

A: Model Number, B: Serial Number, C: Price, D: Color, E: Model Name, F: Year of Manufacture

Overstrong PJ/NF
Projection Split Join Union Normal Form

“Normal Forms and Relational Database Operators”

ACM SIGMOD Conference, 1979
RONALD FAGIN

In the same paper that introduced PJ/NF (commonly called 5NF), Fagin touched on two variations of PJ/NF. We briefly describe
them here.

Compare PJ/NF to overstrong PJ/NF, both definitions from [Fag79]

PJ/NF
R is in PJ/NF if K ⊧σ.
Where σ is each JD.

Thus, every JD is the result of keys.

Overstrong PJ/NF
R is in overstrong PJ/NF if, there is a key dependency K X of R such that K X ⊧σ.
Where σ is each JD.

Thus, every JD is the result of a key.

Fagin provides proof the two definitions are not equivalent, and that overstrong PJ/NF is “too demanding”.

Projection Split Join Union Normal Form (PSJU/NF)
R is in PSJU/NF if:

• It is in PJ/NF, and
• There is no way to split R into R1 and R2 where the set of dependencies that hold in R1 is not the same as the

set of dependencies that hold in R2

Since PJ/NF is framed in terms of the two operations projection and join, Fagin suggests this normal form based on four
operations.

The split operation is described as the inverse of the union, and is notated withΨ.

[Fag79] gives the above as a “possible definition”, noting it requires modifications. The “major defect” identified is what
restrictions the split operation should have; Fagin raises some points but leaves the details as an “interesting research problem”.

PSJU/NF is closely related to (3, 3) NF [Smi78], discussed earlier in this appendix.

Tight Fourth Normal Form
Project-Join Normal Form

The Theory of Relational Databases
Computer Science Press, 1983

D. MAIER

Tight 4NF
R is in tight fourth normal form if:

1. R is in 4NF and
2. R can be obtained by a series of tight decompositions.

A decomposition (R, S) is a tight decomposition if there is no other decomposition (R’, S’) such that R’∩S’ is properly contained
in R∩S. That is, the overlap of R and S is minimal.

Compare project-join normal form (5NF) with projection-join normal form (PJ/NF):

R is in the given normal form if for every JD ∗{R1, R2 … Rp} implied by {ƒ, J}:

Project-Join Normal Form (5NF)

1. The JD is trivial or
2. Every Ri is a superkey for R

Projection-Join Normal Form (PJ/NF)

1. ∗{R1,R2 … Rp} is implied by the key FDs of R

The definition of 5NF then is that every component of every nontrivial JD is a key.

[Vin97] points out several problems with this requirement see the discussion of Reduced Fifth Normal Form (5NFR). [Kho02]
notes the same problem, and proposes a different solution.

Reduced Fifth Normal Form

“A Corrected 5NF Definition for Relational Database Design”
Theoretical Computer Science 185, 1997

MILLIST W. VINCENT

In this paper, some deficiencies are identified with the 5NF definition given in [Mai83]:

• It does not generalize 4NF.
• It requires every attribute to be a superkey.

The second in particular is problematic, because it is a requirement that is “virtually impossible to achieve in practice and is
clearly not what was intended in the introduction of 5NF” [Vin97].

To correct these deficiencies, 5NFR is introduced.

Compare the definitions, as given in [Vin97].

R is in the given normal form with respect to {ƒ, J} if:

Project-Join Normal Form (5NF)
For every σ ∈ {ƒ, J} +, every component of σ is a superkey.
Where σ is a nontrivial total JD

Reduced 5NF (5NFR)
For every σ ∈ {ƒ, J} +, every component of σ is a superkey.
Where σ is a nontrivial strong-reduced total JD

A JD ∗{R1, … Rp} in Σ+ is strong-reduced if it is total and for every component Ri the JD obtained by removing Ri from ∗{R1, …
Rp} is either not in Σ+ or it is not total.

One of the examples (Example 3.3) given in [Vin97] is:

 R = {A, B, C} and Σ = {A BC}. This means Σ implies the JD ∗{AB, AC, BC}. The problem here is the component BC is
not a superkey. BC is not needed in that the JD with it removed, ∗{AB, AC} is also in Σ+.

Thus ∗{AB, AC, BC} is not a strong-reduced join dependency.

[Vin97] then shows that the 5NFR definition:

• Generalizes and implies 4NF
• Is weaker than both 5NF and PJ/NF

5NFR meets the design goal of minimizing storage.

Key Complete Normal Form
Redundancy Free Normal Form

“Redundancy Elimination and a New Normal Form for Relational Database Design”
Semantics in Databases, Springer-Verlag LNCS 1358, 1998

MILLIST W. VINCENT

In addressing the design goal of elimination of redundancy, [Vin98] introduces KCNF. On the way to doing so, RFNF is
introduced.

The two are equivalent, but KCNF is a syntactic normal form (like BCNF and 4NF), where RFNF is a semantic normal form.
The argument for this approach is given:

The difference between the two types of normal forms is that semantic normal forms directly specify the set of relations
with the desired design properties, whereas the syntactic normal forms only do this indirectly….We believe that
semantic normal forms, by making explicit the aims of database design, are the appropriate starting point….

Redundancy Free Normal Form (RFNF)
R is in RFNF with respect to { ƒ, J } if:

1. There does not exist a relation in SAT ({ƒ, J}) that is redundant.

The set of all relations which satisfy {ƒ, J} constraints is: SAT ({ƒ, J}). A relation in this set is r.
t is a tuple in r.

t [A] is redundant if:
For every replacement of t [A] by a value A’ such that t [A] ≠A’ and resulting in a new relation r’, then r’ ∈ SAT ({ƒ, J}).

There is an alternative definition of RFNF in [Lev00].

Key Complete Normal Form (KCNF)
R is in KCNF with respect to { ƒ, J } if:

1. The left hand side of every nontrivial FD in { ƒ, J } is a superkey, and
2. Every JD in {ƒ, J} is key complete.

A JD ∗{R1, …, Rn} ∈ {ƒ, J }+ is key complete if the union of its components which are superkeys is equal to R

[Vin98] also demonstrates that: PJ/NF ⇒ 5NFR ⇒ KCNF

It may be helpful to summarize these various fifth normal forms:
Form Strictness Aspect Introduced in:
KCNF Least Redundancy Elimination 1998
5NFR . Storage Minimization 1997
PJ/NF . No key-based update anomalies 1979
5NF Most Storage Minimization 1983

Not only are the forms increasingly strict as the table shows, but [Vin98-2] also shows:
5NF ⇒ PJ/NF ⇒ 5NFR ⇒ KCNF

Q-5NF

“Understanding the Fifth Normal Form (5NF)”
Australian Computer Science Communications 14(1), 1992

M. ORLOWSKA and Y. ZHANG

Q-5NF is mentioned in [Vin97], where it is described as being shown equivalent to PJ/NF in the paper that introduces it.

Q-5NF
R is in Q-5NF iff:

For any JD of R JD, *{R1, R2, …, Rm) the intersection graph is superkey connected.

Superkey Normal Form

“Minimal Lossless Decompositions and Some Normal Forms between 4NF and PJ/NF”
Information Systems 23(7), 1988

RAGNAR NORMANN

Superkey Normal Form is closely related to 5NFR. This means [Nor98] and [Vin97] cover much of the same ground. [Nor78]
even opens with the same example we saw in 5NFR, noting that it meets PJ/NF, but not 5NF.

Superkey Normal Form (SNF)
R is in SNF if:

1. Every component of every minimal lossless decomposition of R is a superkey in R.

A lossless decomposition of R is said to be minimal if no proper subset of that decomposition is also a lossless decomposition of
R. The means a minimal lossless decomposition is equivalent to [Vin97] strong-reduced JD. This in turn means SNF is
equivalent to 5NFR.

Superkey Normal Form k (SNFk)
R is in SNFk if:

1. All minimal lossless decompositions with at most k components consist of superkeys only.

[Nor98] then shows:

1. SNF1 = 1NF
2. SNF2 = 4NF
3. SNFk+1 ⊂ SNFk
4. SNF ⊂ SNFk
5. 5NF ⊂ SNF

Finally, [Nor98] gives an example of a relation in SNK3 which is not in 5NF. This is what is referred to in the title as a form
“between 4NF and PJ/NF”21.

21 [Nor98] is using “PJ/NF” to refer to Maier’s project-join normal form, which we refer to as 5NF.

Domain Key Normal Form

“A Normal Form for Relational Databases that is based on Domains and Keys”
ACM Transactions on Database Systems 6(3), September 1981

RONALD FAGIN

A relation R is in DK/NF if every constraint in R can be inferred by the domain and key dependencies. Restated, a relation in
DK/NF if, by enforcing the DDs and KDs, every schema constraint is also enforced [Fag81].

The problem with DK/NF is two-fold: one, it is not possible to put every relation in DK/NF, and secondly, it’s not possible to
know exactly when a relation can be put in DK/NF. This means DK/NF is more of a goal to strive for than actually achieve.

The main reason for this problem is that a relation may have constraints that DDs and KDs simply can not address. A common
example of this type of constraint is requiring that a table contain x number of records – a cardinality constraint.

That being said, [Fag81] has some interesting re-definitions of the common higher normal forms, and proves that the new
definitions are equivalent to the original, provided no domain is too small.

Let Γ be the set of DDs and KDs of R. R is in the stated normal form if:

BCNF’
Γ ⊧ σ
Where σ is each FD

4NF’
Γ ⊧ σ
Where σ is each MVD

PJ/NF’
Γ ⊧ σ
Where σ is each JD

DK/NF
Γ ⊧ σ
Where σ is every constraint

It is further proved that:

DK/NF ⇒ PJ/NF’ ⇒ 4NF’ ⇒ BCNF’

Finally, [Fag81] suggests a generalization of DK/NF, called C normal form, where C is a certain class of constraints.

A relation is in C normal form, if the set of constraints of the relation is the set of logical consequences from the constraints in
class C.

So, for example, if the classC is the class of all DDs and KDs then C normal form is DK/NF.

Inclusion Dependency Normal Form

“Inclusion Dependencies in Database Design”
Proc. Int’l Conf. Data Engineering, Los Angeles, 1986

HEIKKI MANNILA and KARI-JOUKO RÄIHÄ

Inclusion Dependency Normal Form (IDNF)
D is in IDNF if:

1. Every R in D is in 3NF
2. Every IND is key-based
3. The set of INDs is noncircular

An inclusion dependency R[X] ⊆S[Y] is key-based if Y is a key of S.

A set of INDs is circular if:

1. There exists a relation R with distinct attributes X and Y such that R[X]⊆R[Y] or
2. There exist relations R1 … Rn, where R1[X1]⊆R2[Y2], … Rn[Xn]⊆R1[Y1]

3NF instead of BCNF was chosen as a requirement because, according to [Man86]: “it is not always possible to obtain schemes
in BCNF if dependency preservation and lossless joins are also desired.”

[Man86] identifies 3 situations where INDs are used, with the general form R[X] ⊆ S[Y]:

1. Abstraction
RegisteredCars [Model] ⊆ CarTypes [Model]
Here, each registered car is an instance of a car type.

2. Specialization
SportsCars [Model] ⊆ CarTypes [Model]
Here, sports cars contain additional information not relevant to other car types.

3. Existency Constraints
Yachts [Owner] ⊆ RegisteredCars [Owner]
Here the implication is yachts can only be owned by those owners owning cars.

In the first two, Y is a key of S, but in examples of the third type Y may or may not be a key.

[Man86] makes the argument that existency constraints should not influence the design process, and therefore restrict IDNF to
considering key-based INDs.

This argument is questioned in [Lin92], where Inclusion Normal Form (IN-NF) is introduced. [Lin92] also suggests that IDNF
does not address the relational design goals of minimality and avoiding update anomalies.

Noncircular INDs are required because if the set of INDs was circular, no inserts could be made without violating one or more
INDs.

A slightly different definition of IDNF is given in [Lev00].

Inclusion Normal Form

“Logical Database Design with Inclusion Dependencies”
Proc. Int’l Conf. Data Engineering, Tempe, 1992

TOK WANG LING and CHENG HIAN GOH

Inclusion Normal Form (IN-NF)
D is in IN-NF if:

1. There are no weakly superfluous attributes in any of the relation schemes.

D has the universal relation scheme R0 and set of FDs Σ is one where:

1. The set of FDs implied by all keys forms a minimal cover for Σ
2. No 2 relation schemes have equivalent keys
3. R1 … Rn form a nonloss decomposition of R0

A weakly superfluous attribute is both weakly restorable and weakly nonessential.

Let D = {R1 … Rn} be a preparatory database scheme. Let B be some attribute in Ri. Let Φ be the set of INDs in D. Let G’i be a
minimal closure for Ri. Let “derived” in the next two definitions mean “derived from Gi (B)∪Φ using inference rules”

An attribute B is weakly restorable if there exists a key K of Ri, not containing B, such that K B can be derived. If an attribute
is restorable it is weakly restorable.

An attribute B is weakly nonessential if there exists another key K’ of RI, not containing B, such that K K’ can be derived. If
an attribute is nonessential it is weakly nonessential.

Consider an example from [Lin92] with this modeling:

R1 (Employee, EName, Office)
R2 (Office, Phone, Dept)
R3 (Manager, MName, MPhone, Dept)

FDs INDs
Employee EName, Office
Office Phone, Dept
Phone Office
Manager MName, MPhone, Dept
Dept Manager

R3[Manager, MName] ⊆ R1[Employee, EName]
R3[Manager, Dept] ⊆ (R1 ⋈ R2)[Employee, Dept]

R3[Manager, MPhone] ⊆ (R1 ⋈ R2)[Employee, Phone]

The first IND means every manager is an employee. The second IND means if an employee is a manager of a dept, they must
belong to that dept. The third follows from the first.

Each relation in the example is in 5NF and Improved 3NF22, yet there is redundancy. MName and MPhone can both be removed
from R3 because they are both weakly superfluous. After this removal, IN-NF is satisfied.

It is shown in [Lin92] that:

IN-NF ⇒ Improved 3NF
IN-NF ⇒ BCNF

22 See [Lin92] for details. R3.Dept is restorable but not weakly nonessential, and R3.MName is weakly nonessential, but not nonessential, etc.

Value Redundancy Free Normal Form
Attribute Redundancy Free Normal Form
Redundancy Free Normal Form
Inclusion Dependency Normal Form
Interaction Free Inclusion Dependency Normal Form

“Justification for Inclusion Dependency Normal Form”
IEEE Transactions on Knowledge and Engineering 12(2), March/April 2000

MARK LEVENE and MILLIST W. VINCENT

Let Σ be the combined sets of {ƒ, I}

Value Redundancy Free Normal Form (VRFNF)
D is in VRFNF if there does not exist a database d over R and an occurrence of a value t [A] that is redundant in d with
respect toƒ.

Attribute Redundancy Free Normal Form (ARFNR)
D is in ARFNF if there does not exist an attribute A in a relation schema R ∈ D which is redundant with respect toΣ.

Redundancy Free Normal Form (RFNF)
D is in RFNF if it is in VRFNF and ARFNF

Inclusion Dependency Normal Form (IDNF)
D is in IDNF if:

D is in BCNF with respect to ƒ and
I is noncircular and key-based

Note that this differs slightly from the IDNF definition given in [Man86].

Interaction Free Inclusion Dependency Normal Form (IFIDNF)
D is said to be in IFIDNF if:

D is in BCNF with respect to ƒ and
All INDs in I are either key-based or express pair-wise consistency
ƒ and I do not interact.

Two relation schemes R and S are consistent if I includes the two INDs:
R[R∩S] ⊆ S[R∩S] and S[R∩S] ⊆ R[R∩S]

D is pair-wise consistent if every pair of its relation schemas are consistent.

ƒ and I do not interact if:

For all FDs α over D, for all subsets G ⊆ ƒ, G ∪ I ⊧ α iff G ⊧α, and

For all INDs β over D, for all subsets J ⊆ I, ƒ ∪ I ⊧ β iff J ⊧ β

Entity-Relationship Normal Form

“Mapping Uninterrupted Schemes into Entity-Relationship Diagrams:
Two Applications to Conceptual Schema Design”

IBM Journal Res. Develop. 28(1), January 1984
MARCO A. CASANOVA and JOSE E. AMARAL de SA

Entity-Relationship Normal Form (ERNF)
A relational scheme is said to be in ERNF iff:

1. Each relation scheme is in BCNF
2. Each IND R[X] ⊆ S[Y] is such that Y is a key of S
3. The relational scheme defines an ER-schema

[Cas84] gives us these definitions:
Let D be a set of relation schemes and Σ be a well-formed set of references. Let R be a relation scheme in D.

a. R defines an entity type in Σ iff Σ contains no reference of the form R[K] ⊂ S[L], for any S in D
b. R defines a weak entity type in Σ iff Σ contains a single reference of the form R [K] ⊂ S [L], for some S in D, and K

intersects every key of R.
c. R defines a relationship type in Σ iff Σ contains a set of references of the form R[K1] ⊂ S1[L1] … R[Km] ⊂ Sm[Lm] such

that K1 ∪ … ∪ Km is a key of R.
d. R defines an ER-object iff R defines either an entity type, a weak entity type, or a relationship type.
e. D and Σ define an ER-schema iff each relation scheme in D defines an ER-object.

ERNF is an attempt to address two problems [Cas84]:

1. How to define a relational database schema that can be interpreted at higher level concepts.
2. How to obtain a relational database schema from the description of a conventional file system.

Object Normal Form

“Objects in Relational Database Schemes with Functional, Inclusion, and Exclusion Dependencies”
3rd Symp. of Math. Fund. of Database and Knowledge Systems, Rostock, 1991

JOACHIM BISKUP and PRATUL DUBLISH

D is in the stated normal form iff/if for each (X, i) ∈ LHS (ƒ), <Ri, ƒi> is in BCNF, and:

Weak Object Normal Form (Weak ONF)
(iff) if Ri[Z] occurs in a non-trivial EXD in (ƒ∪I∪E)+ then Z is not a subsequence of X.

Strong Object Normal Form (Strong ONF)
(iff) X is the unique minimal key of <Ri, ƒi> and Ri does not occur in any non-trivial EXD in (ƒ∪I∪E)+

With the above definitions, there are no sound and complete procedures to test if a given database scheme is in weak or strong
ONF. Because of this, the modified definitions are given, in which [Bis91] proves are testable in polynomial time.

Weak Object Normal Form (modified)
(if) if Ri[Z] occurs in a non-trivial EXD in (ƒ∪I∪E)+ then Z is not a subsequence of X.

Strong Object Normal Form (modified)
(if) X is the unique minimal key of Ri and Ri does not occur in any non-trivial EXD in E.

Sixth Normal Form

Temporal Data and the Relational Model
Morgan Kaufmann, 2002

C.J. DATE, HUGH DARWEN, and NIKOS A. LORENTZOS

Sixth Normal Form (6NF)
R is in 6NF iff

It satisfies no nontrivial JDs.

Although 6NF is always achievable and can be applied to all relational databases, it is in temporal databases where this level of
decomposition becomes most important.

Consider the example in [Dat02] (which is also given in [Dat04]):

SSSC_DURING {S#, SName, Status, City, During)

Where S# is a supplier number, SName is a supplier name, Status is some status code, City is the city the supplier is located in,
and During a timestamp of the form [dX: dY], where dX indicates a starting day and dY indicates an ending day. This gives the
“during” period.

Accept that in a temporal database this is a single value of type INTERVAL and does not violate 1NF.

The above is in PJ/NF, because all JDs are trivial (and the result of a key), yet there are still potential problems.

Specifically, any of the non-key attributes could change independently of the others during the time stamped period. This would
lead to multiple update operations.

The decomposition into 6NF is referred to as vertical decomposition and is as follows:

S_DURING{S#, During}
S_NAME_DURING{S#, During, SName}
S_STATUS_DURING{S#, During, Status}
S_CITY_DURING{S#, During, City}

Thus, any change in an attribute does not affect the entire tuple from SSSC_During.

It is easy to see that 6NF ⇒ 5NF. However, it is interesting to note that DK/NF ⇒ 6NF does not hold.

Object-Normal Form
Fourth Object-Normal Form
Fifth Normal Form
Fifth Object-Normal Form
Sixth Normal Form
Sixth Object-Normal Form

“On Normalization of Relations in Relational Databases”
Programming and Computer Software 28(1), 2002

V.V. KHODOROVSKII

Object-Normal Form (ONF)
R is in ONF if:

It is BCNF
It does not contain subobjects

A subobject is a set of attributes X in a BCNF relation R where:

X ⊂ R
X contains more than one attribute
X is not a superkey of R
Attributes from X are semantically interrelated and isolated from the attributes of (R – X)
Attributes from X represent semantic unity of the corresponding part of the application domain

This is not the same ONF as [Bis91].

Fourth Object-Normal Form (4ONF)
R is in 4ONF if:

It is in 4NF and in ONF

Fifth Normal Form (5NF)
R is in 5NF if:

For any irredundant JD *[R1, R2, …, Rp] in R every Ri is a superkey of R

A JD *[R1, R2, …, Rp] of R is irredundant if no proper subset of that JD in turn defines a JD in R. This is “essentially equivalent”

[Kho02] to the minimal JD from [Fag79].

[Kho02] claims this is “the correct definition … given for the first time”.

Fifth Object-Normal Form (5ONF)
R is in 5ONF if:

It is in 5NF and in ONF

Sixth Normal Form (6NF)
R is in 6NF if:

It is in 5NF
It does not contain dependencies with weak excess.

The trivial JD J is said to be a dependency with weak excess if:

n
nn* −

=α ≪ 1, where α is the excess coefficient. n* is the cardinality of R* and n is the cardinality of R0.

R* is the join of R1 and R2, where R1, R2, and R3 are the projections of R0 into 5NF, where R0 is in ONF with three subobjects.

This is not the same 6NF as [Dat02].

Sixth Object-Normal Form (6ONF)
R is in 6ONF if:

It is in 6NF and in ONF

“Restriction-union” Normal Form

An Introduction to Database Systems (8th Edition)
Addison-Wesley, 2004

C.J. DATE

This is not a real normal form, but more of a provoking question posed in [Dat04]. Since the “classic” normal forms all deal with
the projection and join operations, could a normal form (or even a series of forms) be worked out around decomposing by
restriction, rather than projection?

Date immediately notes that the results would almost certainly be a poor design, but is making the larger point that “classic
normalization theory has absolutely nothing to say in answer to such questions.”

(3, 3)NF from [Smi78] and PSJU/NF from [Fag79] are given as possible starting points or sources for ideas.

We can also add that there are several normal forms covered in this appendix that consider operations other than projection.

APPENDIX G

REFERENCES

Arm03 Armstrong, William W., Nakamura Y., and Rudnicki P.
“Armstrong’s Axioms”
Journal of Formalized Mathematics, 14, 2003.

Bee77 Beeri, C., Fagin, R. and J. Howard
“A Complete Axiomatization for Functional and Multivalued Dependencies in Database Relations”
Proceedings of the 1977 ACM SIGMOD Conference Ontario, Canada, 1977

Bee79 Beeri, C. and Bernstein P.
“Computational Problems Related to the Design of Normal Form Relational Schemas”
ACM Transactions on Database Systems 4(1), March 1979

Ber76 Berstein, P.A.
“Synthesizing Third Normal Form Relations from functional dependencies”
ACM Transactions on Database Systems 1(4), December 1976

Bis91 Biskup, Joachim and Pratul Dublish
“Objects in Relational Database Schemes with Functional, Inclusion, and Exclusion Dependencies”
3rd Symp. of Math. Fund. of Database and Knowledge Systems, Rostock, 1991

Cas83 Casanova, Marco A. and V.M.P. Vidal
“Towards A Sound View Integration Methodology”
Proc. 2nd ACM SIGACT-SIGMOD Sym. of Prin. of Database Systems, Atlanta, 1983

Cas84 Casanova, Marco A. and Jose E. Amaral de Sa
“Mapping Uninterrupted Schemes into Entity-Relationship Diagrams: Two Applications to Conceptual
Schema Design”
IBM Journal Res. Develop. 28(1), January 1984.

Cas84-2 Casanova, Marco A., Ronald Fagin, and Christos H. Papadimitriou
“Inclusion Dependencies and Their Interaction with Functional Dependencies”
Journal of Computer and System Sciences 28(1), February 1984

Cod70 Codd, E.F.
“A Relational Model of Data for Large Shared Data Banks.”
Communications of the ACM 13(6), June 1970

Cod71 Codd, E.F.
“Further Normalization of the Data Base Relational Model”
IBM Research Report RJ909, August 1971

Cod71-2 Codd, E.F.
“Normalized Data Base Structure: A Brief Tutorial”
Proc. ACM SIGFIDET Workshop, San Diego, 1971

Cod74 Codd, E.F.
“Recent Investigations in Relational Data Base Systems”
IFIP Congress, 1974

Dat92 Date, C.J. & Fagin, R.
“Simple Conditions for Guaranteeing Higher Normal Forms in Relational Databases”
ACM Transactions on Database Systems, 17(3), September 1992

Dat99 Date, C.J.
“Thirty Years of Relational: The First Three Normal Forms, Part 2”
Intelligent Enterprise 2(6), April 1999

Dat02 Date, C.J., Hugh Darwen, and Nikos A. Lorentzos
Temporal Data and the Relational Model
Morgan Kaufmann, 2002.

Dat03 Date, C.J.
“What First Normal Form Really Means”
Available from: http://www.dbdebunk.com

Dat04 Date, C.J.
An Introduction to Database Systems
8th Edition. Addison-Wesley, 2004

Fag77 Fagin, R.
“Multivalued Dependencies and a New Normal Form for Relational Databases”
ACM Transactions on Database Systems 2(3), September 1977

Fag79 Fagin, R.
“Normal Forms and Relational Database Operators”
ACM SIGMOD Conference, 1979

Fag81 Fagin, R.
“A Normal Form for Relational Databases That Is Based on Domains and Keys”
ACM Transactions on Database Systems 6(3), September 1981

Hea71 Heath, I.J.
“Unacceptable File Operations in a Relational Data Base”
Proc. ACM SIGFIDET Workshop, San Diego, 1971

Ken83 Kent, W.
“A Simple Guide to Five Normal Forms in Relational Database Theory”
Communications of the ACM 26(2), February 1983

Kho02 Khodorovskii, V.V.
“On Normalization of Relations in Relational Databases
Programming and Computer Software 28(1), 2002

Lev00 Levene, Mark and Millist W. Vincent.
“Justification for Inclusion Dependency Normal Form”
IEEE Transactions on Knowledge and Engineering 12(2), Mar/Apr 2000

Lin81 Ling, Tok-Wang, Frank W. Tompa and Tiko Kameda.
“An Improved Third Normal Form for Relational Databases”
ACM Transactions on Database Systems 6(2), June 1981

Lin92 Ling, Tok-Wang and Cheng Hian Goh
“Logical Database Design with Inclusion Dependencies”
Proc. Int’l Conf. Data Engineering, Tempe,1992

Mai83 Maier, D.
The Theory of Relational Databases
Computer Science Press, 1983

Man86 Mannila, Heikki and Kari-Jouko Räihä
“Inclusion Dependencies in Database Design”
Proc. Int’l Conf. Data Engineering, Los Angeles, 1986

Mit83 Mitchell, John C.
“Inference Rules for Functional and Inclusion Dependencies”
Proc. ACM PODS, 1983

MW04 “normalization”
Merriam-Webster Online Dictionary. 2004.
http://www.merriam-webster.com (1 March 2004)

Nor98 Normann, Ragnar.
“Minimal Lossless Decompositions and Some Normal Forms between 4NF and PJ/NF”
Information Systems 23(7), 1998

Orl92 Orlowska, Maria E. and Yanchun Zhang
“Understanding the Fifth Normal Form (5NF)”
Australian Computer Science Communication 14(1), 1992

Par80 Parker, D. Stott, Jr. and Kamran Parsaye-Ghomi
“Inferences Involving Embedded Multivalued Dependencies and Transitive Dependencies”
Proc. ACM SIGMOD Int’l Conf. on Management of Data, Santa Monica, 1980

Pas04 Pascal, Fabian
“What First Normal Means Not”
Available from: http://www.dbdebunk.com

Pas04-2 Pascal, Fabian
“The Costly Illusion: Normalization, Integrity and Performance”
Available from: http://www.dbdebunk.com

Pra91 Pratt, Philip & Joseph Adamski.
Database Systems Management and Design. p. 258
Second Edition. Boyd & Frasier. 1991.

Sci82 Sciore, Edward.
“A Complete Axiomatization of Full Join Dependencies”
Journal of the ACM 29(2), April 1982

Sil01 Silberschatz A., Korth, H.F, and S. Sundershan
Database System Concepts.
4th Edition. Appendix C. 2001

Smi78 Smith, J.M.
“A Normal Form for Abstract Syntax”
Proc. 4th Conf. Very Large Data Bases, Berlin, 1978.

Vin97 Vincent, M.W.
“A Corrected 5NF Definition for Relational Database Design”
Theoretical Computer Science 185, 1997.

Vin98 Vincent, M.W.
“Redundancy Elimination and a New Normal Form for Relational Database Design”
Semantics in Databases, Springer-Verlag LNCS 1358, 1998.

Vin98-2 Vincent, M.W.
“What is the real 5NF?”
http://www.cis.unisa.edu.au/~cismwv/papers (Awaiting publication, 1998)

Wer93 Wertz, Charles.
Relational Database Design.
CRC Press, Inc. 1993. p. 72

Wu92 Wu, M.S.
“The Practical Need for Fourth Normal Form”
ACM SIGCSE Bulletin 24(1), March 1992

Zan82 Zaniolo, Carlo
“A New Normal Form for the Design of Relational Database Schemata”
ACM Transactions on Database Systems 7(3), September 1982

